Generating Sentences by Editing Prototypes

Kelvin Guu*, Tatsunori Hashimoto*, Yonatan Oren, Percy Liang

TACL 2018, appeared at ACL 2018

\begin{Overview}

Goal: sentence generation

p(y) =—— vy ="stocks fell by 2 percent'

p(y | X)
X ="JEEYEFEGE" — VY ="beating adead horse'

p(y | x)
X = "how are you?" =139 y = "pretty good, you?"

The status quo

word word word word
e |eft to right f f f f
e word by word .
Train on wide output distributions

* low diversity

e the generic utterance problem

o ("Idon't know", 'I'm sorry") [Li+ 2016, Serban+ 2016, Ott+ 2018]

* NO semantic control [Hu+ 2017]

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

— rototype controls uarantee
(The food here is ok but not worth the price) P yP . 9 . .
rough semantics diversity
Edit using
attention
Generation |
(The food is mediocre and not worth the ridiculous price .) Seq 2seq € d itor

Injects variation

Overview of results

- More diverse generations

- Higher quality generations (Mechanical Turk)

- Better perplexity (BillionWord, Yelp reviews)

- Seg2seq edits are semantically interpretable
* preserve semantic similarity
* can be used to perform sentence-level analogies

\end{Overview!

\begin{Approach!

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from ‘

the training set .
| ; “e ™~ Pedit
Edit Vector Prototype
(O O0O0 O) (The food here is ok but not worth the price)
Edit using
attention
Generation

(The food is mediocre and not worth the ridiculous price .) y Y pedlt or (y | < D < e)

y = output sentence 2z, = prototype sentence z. = edit vector

INtultions

humans are not pure left-to-right generators
* we write a first draft, then edit
* we use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

AN

< >

seqg2seq

Another intuition

You can’t cram the meaning of a
whole %0&!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014]

Professor of Computer Science
The University of Texas at Austin

) meaning edit a @ prototype
vector vector sentence

X hard _
Vv easier

@ sentence @ sentence

Training objective

maximize

&
\<\Go p(y ZP | 2p) Pproto (2p) expensive

ﬁ&o / Peditor (y | D Ze) Pedit (Ze) dze intractable
N\ e

key tool: ELBO (evidence lower bound)

[Dempster+ 77, Jordan+ '99, Kingma+ '13]

 more computationally tractable
* bias towards semantically interpretable edits

y = output sentence 2z, = prototype sentence z. = edit vector

ELBO (in general)

logp (y) > / logp (y | 2) q (2) dz — KL (q(2) |p (2))

<

/ p(y | 2)p(2)dz q(2)

you choose q(z)

e add helpful biases to the mod‘ I

e tightness of the lower bound

y = output sentence 2z, = prototype sentence z. = edit vector

Training objective

maximize

l

N eo P (y> — Zp (y ‘ Zp)pproto (Zp) eXpeﬂSive

o

QGO / Deditor (Y | 2ps Ze) Pedit (2e) dze iIntractable

y = output sentence 2z, = prototype sentence z. = edit vector

ELBO on prototypes

ZP | 2p) Pproto (2p)

y = output sentence 2z, = prototype sentence z. = edit vector

q(z) over prototypes

Question Answer
prototype z, was probably not
q (Zp) ~ P (Zp ‘ y) too different from y.

q(zp) := Uniform(N (y))

N (y) =

Jaccarao

N(y) = all sentences with
high token overlap

y = output sentence 2z, = prototype sentence z. = edit vector

q(z) over prototypes

ELBO =) logp(yl2)a(z) — KL(q(2) [Pproto (2p))
p]

> logp(yl|z)+C
z2p EN(y)

1
N ()]

Looks like typical sequence-to-sequence objective
prototype zp, —> outputy

bias towards small edits computationally tractable

y = output sentence 2z, = prototype sentence z. = edit vector

Training objective

maximize

l

8 W) =) _pWl2) Poroto (2p) expensive

o

Q@O /z Deditor (Y | 2ps Ze) Pedit (2e) dze iIntractable

y = output sentence 2z, = prototype sentence z. = edit vector

ELBO on edit vectors

sample ze from g(ze) logp (¥ | 2p)

Z,, Ze —> Y

/

> Ezewq(ze) [logpeditor (y ‘ Py Ze)] — KL (q (Ze) Hpedit (Ze))

reconstruction_cost KL_penalty

measures how well we can measures difference
reconstruct y from prototype between q and
Z, and edit ze edit prior Pedit

y = output sentence 2z, = prototype sentence z. = edit vector

ELBO on edit vectors

logp (y | zp)

> Ezewq(ze) [logpeditor (y | <) Ze)] — KL (C] (Ze) Hpedit (Ze))

q(ze) = p(ze | yvzp) ?

y = output sentence 2z, = prototype sentence z. = edit vector

q(z) over edits

Question Answer

Compare the two sentences.

q(2e) = p(ze | ¥, Zp)
Figure out which words were
inserted and deleted.
Then sum their word vectors.

y = output sentence 2z, = prototype sentence z. = edit vector

Prototype
(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

[(mediocre)(and)(ridiculous)][(here) ok) but j

Embed, sum, combine ‘

00000 (OOOOO)SOOOOO) 00000 (OOOOO) 00000
e S
A

[(ooooo) (ooooo)] Ze

add noise l
bias towards
= e interpretable edits

ke
Zeo !
dd noise to
to a
How

/2

Standard choice (VAE): Gaussian

q (Ze) Pedit (Ze)

ELBO = reconstruction_cost - KL_penalty

reparameterization trick (VAES) closed form

(low-variance MC estimate of gradient)

computationally tractable

The problem with a Gaussian prior

low-dim Gaussian high-dim Gaussian

Pedit (Ze) Pedit (Ze)

0.5

0.4 |
03|
02|

0.1}

Better edit prior

~ Unif [0, 10]
n mag :
q (Z €> " dir ~ unif. over sphere

/2

Pedit (Ze)

y = output sentence 2z, = prototype sentence z. = edit vector

How to add noise to 2.7

A

<e

random rotation

von Mises-Fisher
distribution

How to add noise to 2.7

/

ke
Zeo !
dd noise to
to a
How

<e

q(z) over edits

q (ze) Pedit (Ze)
A :
dir ~ vMF (&E, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €| mag ~ Unif |0, 10]
-LBO = reconstruction_cost - KL_penalty
reparameterization trick (VAES) just a constant

computationally tractable

Summary of training

* Build a training set of lexically similar sentence pairs (zp, V)
* For each pair of sentences (zp, Y)

1. identity words that differ between z, and y

2. embed those words into a vector

3. add noise to get edit vector ze

4. train seq2seq mapping (zp, Ze) —>Y Peditor (Y | Zp, Ze)

5. update q(z.)

y = output sentence 2z, = prototype sentence z. = edit vector

\end{Approach)]

\begin{Results)

Prototype z,

(random edit vector)

i had the fried whitefish taco which
was decent, but i've had much bet-
ter.

| had the <unk> and the fried car-
nitas tacos, it was pretty tasty, but
I've had better.

"hash browns" are unseasoned,
frozen potato shreds burnt to a
crisp on the outside and mushy on

the inside.

the hash browns were crispy on
the outside, but still the taste was
missing.

I'm not sure what is preventing me
from giving it <cardinal> stars,
but i probably should.

I'm currently giving <cardinal>
stars for the service alone.

quick place to grab light and tasty
teriyaki.

this place is good and a quick place
to grab a tasty sandwich.

sad part is we've been there before
and its been good.

I've been here several times and al-
ways have a good time.

Output y

Overview of results

- More diverse generations

- Higher quality generations

- Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Edits are semantically meaningtul

Y ~ Peditor (y | <D s Ze)

T

semantic control polug in your own edit vector!

semantic smoothness:
small magnitude edit vector should cause small changes

consistent edit behavior:
apply the same edit vector to different sentences
should cause semantically analogous edits

y = output sentence 2z, = prototype sentence z. = edit vector

Semantic smoothness

X
o——> 0o /' random walk in
O sentence space
<e ™ Pedit
o
~p

ice cream was one of the best 1've ever tried
some of the best i1ce cream we've ever had
just had the best i1ice - cream 1i've ever had !
some of the best pizza 1've ever tasted !

that was some of the best pizza i1i've had in the

area

Turkers: how jumpy is each step”?

50

40

30

20

10

0

Turkers: how smooth is the random walk?

blue = NeuralEditor green = SVAE [Bowman+ 2015]
50

40

30

20

10

paraphrase oughty equivalent e topic gnrelated .dentical (bad)

better

—

Consistent edit behavior

e Ihis was the best restaurant !

/

O
This was a good restaurant .

o Their cake was the greatest !

/

O
Their cake was great.

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

_ past tense
IS ———————— was
This is the place to go. This was the place to go.
past tense
comes -_— came
He comes home tired and happy. He came home happy and tired.

(allow reordering and stopwords)

Sentence analogy dataset

Ze
This is the place to go. =sssssasassa- > This was the place to go.
<p Y
He comes home tired and happy. He came home happy and tired.
: I ?

Sentence analogy results

100

Exact sentence match (top-10 outputs)

Sentence analogy results

100

80

60

40 |-

20 |-

blue = exact sentence match (top-10 outputs)

green = exact word match (GloVE)

Results

- More diverse generations

- Higher quality generations

Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Perplexity

60
50
40
30
20

10
better

Yelp review corpus Billion Word Benchmark

green = standard NLM

blue = NeuralEditor (same decoder architecture)
+ backoff to standard NLM

NLM |Oglo

NLM |Oglo

Perplexity (closer look)

NLM vs KN5 likelihoods

—-20-
—40-
—601
—80 —60 —40 —20
KN5 |Oglo
NLM vs NeuralEditor likelihoods
0 Similarity to
training set |

—201 e 300

e 50
—401 -1
—60-
—80-

—60 —40 —20

NeuralEditor logig

—80

neural LM
classic Kneser-Ney LM
similar

neural LM
NeuralEditor
different

Results

¢ More diverse generations

Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Nalve way to Increase diversity

allows ungrammatical
sequences

raise the temperature

vvord word vvord vvord

O-O-O~O

Increasing diversity of NeuralEditor

Zp y

Y ~ Peditor (y | <D s Ze)

more diverse

prototypes raise temperature

still grammatical

editor is only modeling minor variation
distribution is much easier to represent

Diversity: NLM vs NeuralEditor

temperature

%6_ Diversity

s s always diverse
4] NewralEditor even at temperature = 0
%3 NLM

= 0.0 0.2 0.4 0.6 0.8 1.0

Plausibility

—~2.50 | | | |
= 525 | generations
= 2.00- more plausible at all temps
= —— NeuralEditor
g 175 NLM

_ Grammaticality

32.4

22.2

V/VAN grammaticality suffers

for higher temperatures

—}— NeuralEditor
NLM

Grammaticality
=N
()] (00} o

Results

¢ More diverse generations

Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

\end{Results}

