Generating Sentences by Editing Prototypes

Kelvin Guu*, Tatsunori Hashimoto*, Yonatan Oren, Percy Liang

TACL 2018, appeared at ACL 2018

\begin{Overview}

Goal: sentence generation

The goal is to develop a general-purpose sentence generation technique that can be used for applications like language modeling, machine translation, dialogue, etc.

Goal: sentence generation

p(y) = vy ="stocks fell by 2 percent"

The goal is to develop a general-purpose sentence generation technique that can be used for applications like language modeling, machine translation, dialogue, etc.

Goal: sentence generation

p(y) = vy ="stocks fell by 2 percent"

p(y | x)
X =" EEE" —p Yy ="bDeating a dead horse’

The goal is to develop a general-purpose sentence generation technique that can be used for applications like language modeling, machine translation, dialogue, etc.

Goal: sentence generation

p(y) = vy ="stocks fell by 2 percent"

p(y | x)
X =" EEE" —p Yy ="bDeating a dead horse’

p(y | X)
X = "how are you?' =y vy = "pretty good, you?"

The goal is to develop a general-purpose sentence generation technique that can be used for applications like language modeling, machine translation, dialogue, etc.

The status quo

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word

O-

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word

O-O-

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word

O-O~O-

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word

O-O~O~O -

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word

 left to right f f f f
* word by word "

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word
 left to right f f f f
* word by word "

Train on wide output distributions

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word
 left to right f f f f
* word by word "

Train on wide output distributions

* low diversity

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word
 left to right f f f f
* word by word "

Train on wide output distributions

* low diversity

* the generic utterance problem

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word
 left to right f f f f
* word by word "

Train on wide output distributions

* low diversity

* the generic utterance problem

* ("I'don't know", "I'm sorry") [Li+ 2016, Serban+ 2016, Ott+ 2018]

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

The status quo

word word word word
 left to right f f f f
* word by word "

Train on wide output distributions

* low diversity

* the generic utterance problem

* ("I'don't know", "I'm sorry") [Li+ 2016, Serban+ 2016, Ott+ 2018]

* NO semantic control [Hu+ 2017]

Most existing methods are autoregressive models
- Namely, they generate a sentence from scratch, left to right, word by word

When you fit such models to high-entropy "wide" output distributions, you tend to run into two problems
- researchers have found that they often tend to generate highly generic utterances, such as "l don't know" or "I'm sorry"

- And furthermore, there is no notion of semantic control over what gets generated.

Approach: prototype, then edit

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

Prototype
(The food here is ok but not worth the price)

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

Prototype
(The food here is ok but not worth the price)

Edit using
attention

(The food is mediocre and not worth the ridiculous price .)

Generation

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

Prototype
(The food here is ok but not worth the price)

Edit using
attention

(The food is mediocre and not worth the ridiculous price .)

prototype controls
rough semantics

Generation

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

Al rotot ntrol rant
(The food here is ok but not worth the price) prototype co . OIS gua a_ ee
rough semantics diversity
Edit using
attention
Generation
(The food is mediocre and not worth the ridiculous price .)

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Approach: prototype, then edit

The food here is ok but not worth the price .

Sample from
the training set

e rotot ntrol rant
(The food here is ok but not worth the price) prototype co . OIS gua a_ ee
rough semantics diversity
Edit using
attention
Generation

(The food is mediocre and not worth the ridiculous price .) Seq zse q ed ”.:OI’
Injects variation

To address these problems, we will be proposing a new way to generate sentences.
In this new proposal, we don't generate a sentence from scratch.

Instead, we first grab a sentence from the training set. Let's call that a prototype.
Then you use a sequence to sequence model to edit that sentence into a new sentence.

The prototype enables you to roughly control the semantics of your sentence.
While the seg2seq editor injects additional variation.

And by choosing diverse prototypes, we can avoid the problem of generic utterances.

Overview of results

Overview of results

- More diverse generations

Overview of results

- More diverse generations

- Higher quality generations (Mechanical Turk)

Overview of results

- More diverse generations

- Higher quality generations (Mechanical Turk)

- Better perplexity (BillionWord, Yelp reviews)

Overview of results

- More diverse generations
- Higher quality generations (Mechanical Turk)
- Better perplexity (BillionWord, Yelp reviews)

- Seq2seq edits are semantically interpretable

Overview of results

- More diverse generations

- Higher quality generations (Mechanical Turk)
- Better perplexity (BillionWord, Yelp reviews)

- Seq2seq edits are semantically interpretable
* preserve semantic similarity

Overview of results

- More diverse generations
- Higher quality generations (Mechanical Turk)
- Better perplexity (BillionWord, Yelp reviews)

- Seq2seq edits are semantically interpretable
* preserve semantic similarity

* can be used to perform sentence-level analogies

\end{Overview}

\begin{Approach}

prototype, then edit (formally)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

Sample from
the training set

Prototype
(The food here is ok but not worth the price)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from
the training set

Prototype
(The food here is ok but not worth the price)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from
the training set

Edit Vector Prototype
(0000 O) (The food here is ok but not worth the price)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from
the training set

Edit Vector Prototype
(0000 O) (The food here is ok but not worth the price)

Ze ™ Pedit

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from
the training set

, Ze ™ Pedit
Edit Vector Prototype
(0000 O) (The food here is ok but not worth the price)

Edit using
attention
Generation

(The food is mediocre and not worth the ridiculous price .)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

<p ™~ Pproto

Sample from l

the traini t .
' e training se Ze ~U pedlt
Edit Vector Prototype
(O000 O) (The food here is ok but not worth the price)
Edit using
attention
Generation

(The food is mediocre and not worth the ridiculous price .) y g pedlt or (y | Z jo¥ < e)

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

prototype, then edit (formally)

The food here is ok but not worth the price .

l

<p ™~ Pproto

Sample from
the training set .
& Re ™~ Pedit

Edit Vector Prototype

(0000 O) (The food here is ok but not worth the price)

Edit using
attention

l l Generation

(

The food is mediocre and not worth the ridiculous price .) y g pedlt or (y | Z jo¥ < e)

y = output sentence z, = prototype sentence ze = edit vector

Here is the new generation process we are proposing, in more formal detail.

First, we sample a prototype sentence from our training set, which I'll call z_p
Then, we sample an edit vector, z_e, from some prior distribution over edits

And finally, we combine the prototype and edit vector to produce a new, edited sentence, y.

To keep track of notation, I'll put this legend on the bottom later slides.

INntuitions

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit

e Wwe use templates

* we plagiarize

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

AN

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

INntuitions

humans are not pure left-to-right generators
* we write a first draft, then edit
e Wwe use templates

* we plagiarize

semi-parametric statistics
* we are doing kernel density estimation over sentence space

seqg2seq

One observation is that humans are not pure left-to-right generators.

We can also think about this intuition in terms of semi-parametric statistics
namely, we are trying to perform kernel density estimation

Another intultion

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intuition

Professor of Computer Science
The University of Texas at Austin

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intuition

You can’t cram the meaning of a
whole %&!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intultion

You can’t cram the meaning of a
whole % &!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

meaning
vector

sentence

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intultion

You can’t cram the meaning of a
whole % &!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

meaning
vector X hard

sentence

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intultion

You can’t cram the meaning of a
whole % &!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

meaning prototype
sentence

vector X hard

sentence 0 sentence

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intultion

You can’t cram the meaning of a
whole % &!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

meaning edit e prototype
sentence

vector Xhard vector

sentence 0 sentence

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Another intultion

You can’t cram the meaning of a
whole % &!$ing sentence into
a single $&!*ing vector!

[Ray Mooney, ACL 2014

Professor of Computer Science
The University of Texas at Austin

meaning edit a prototype
sentence
vector Xhard vector_
v easier
sentence 0 sentence

Finally, if none of those intuitions excited you...

Ray's comments echo the challenges people have encountered in trying to build models that look like this (left), where a single vector of meaning is meant to generate a

sentence.

We sought to avoid this problem, by proposing a model like this (right)
Rather than putting the whole sentence into vector space, We only try to cram the meaning of an edit into a vector.

Training objective

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

p(y)

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

p(y) = ZP (4 | 2p) Pproto (2p)

Zp

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

p(y) = ZP (4 | 2p) Pproto (2p)

Zp

/ Peditor (y ‘ Zps Ze) Pedit (ze) dze

Ze

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

¢
p(y) = ZP (4 | 2p) Pproto (2p)

Zp

/ Peditor (y ‘ Zps Ze) Pedit (ze) dze

Ze

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

|
p(y) = Py 2) Pproto (2p) expensive

Zp

/ Peditor (y ‘ Zps Ze) Pedit (ze) dze

Ze

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

|
p(y) = Py 2) Pproto (2p) expensive

Zp

/ Peditor (U | Zps Ze) Dedit (2e) dze intractable

Ze

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

|
p(y) = Py 2) Pproto (2p) expensive

Zp
/ Peditor (U | Zps Ze) Dedit (2e) dze intractable
Ze

key tool: ELBO (evidence lower bound)

[Dempster+ '77, Jordan+ '99, Kingma+ '13]

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

% ol
~% p(y) => pW | 2) Poroto (2p) expensive

/ Peditor (U | Zps Ze) Dedit (2e) dze intractable

Ze

key tool: ELBO (evidence lower bound)

[Dempster+ '77, Jordan+ '99, Kingma+ '13]

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

% ol
~% p(y) => pW | 2) Poroto (2p) expensive

\QGO / Peditor (U | Zp, Ze) Dedit (Ze) dze intractable
\ Ze

key tool: ELBO (evidence lower bound)

[Dempster+ '77, Jordan+ '99, Kingma+ '13]

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

% ol
~% p(y) => pW | 2) Poroto (2p) expensive

\QGO / Peditor (U | Zp, Ze) Dedit (Ze) dze intractable
\ Ze

key tool: ELBO (evidence lower bound)

[Dempster+ '77, Jordan+ '99, Kingma+ '13]

* more computationally tractable

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

Training objective

maximize

% ol
~% p(y) => pW | 2) Poroto (2p) expensive

\QGO / Peditor (U | Zp, Ze) Dedit (Ze) dze intractable
\ Ze

key tool: ELBO (evidence lower bound)

[Dempster+ '77, Jordan+ '99, Kingma+ '13]

* more computationally tractable
* bias towards semantically interpretable edits

y = output sentence z, = prototype sentence ze = edit vector

The generative story we just saw gives us the following overall likelihood of a sentence
- First, we marginalize out over all prototypes that could have produced this sentence.
- And for each prototype, we marginalize out over all edit vectors that could have produced the resulting edit.

In the ideal world, we would then simply maximize the likelihood of this model
- But note that the summation over all prototypes in the training set is very expensive
- And the integration over all possible edit vectors is completely intractable with no closed form solution

To deal with these two problems, we will be applying an important tool from variational inference, called the evidence lower bound
- We will use the ELBO, to derive a lower bound for each of these expressions
- We can then maximize the lower bound instead of the original objective

The new approximate objective will serve two purposes
- be more computationally tractable

- and it will actually bias the model towards more semantically meaningful edits

ELBO (in general)

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

log p (y)

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

log p (y)

/p<y | 2)p (2) dz

z

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

2)q(2)dz— KL(¢(2)|lp (=)

~

logp(y) > / log p (y

/p<y | 2)p (2) dz

z

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

2)q(2)dz— KL(¢(2)|lp (=)

~

logp(y) > / log p (y

[pwl2p()a: q(2)

z

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

z2)q(z)dz — KL(q(2) |p(2))

~

logp(y) = ‘/logp(y

[pwl2p()a: q(2)

z

you choose q(z)

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

z2)q(z)dz — KL(q(2) |p(2))

~

logp(y) = ‘/logp(y

[pwl2p()a: q(2)

z

you choose q(z)

e add helpful biases to the model

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

logp(y) > / logp (y | 2) ¢ (2) dz — KL (q(2) |p ())

~

[pwl2p()a: q(2)

z

you choose q(z)
e add helpful biases to the model
* tightness of the lower bound

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

logp(y) > / logp (y | 2) ¢ (2) dz — KL (q(2) |p ())

~

[pwl2p()a: q(2)

z

you choose q(z)
e add helpful biases to the model
« tightness of the lower bound ¢ (2) = p (2| y)

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

ELBO (in general)

ogp(®) = [loep(y|2)q(2)dz - KL(a(2) [(2)

[pwl2p()a: q(2)

z

you choose q(z)

e add helpful biases to the mode! N
« tightness of the lower bound | ¢(2) = p (2| y)l

y = output sentence z, = prototype sentence ze = edit vector

To use the ELBO, let's first understand what it is.

If you have a log-likelihood function p(y)

And it involves a latent variable z

Then ELBO says you can lower bound the likelihood with this expression

| made the RHS grey because you don't need to look too hard at this right now

The only important thing to note about the RHS is that it introduces a new distribution g over the latent variable z
When you use the ELBO, you get to choose what g is.
- You can choose g to deliberately inject helpful biases into the model
- And your choice of g also affects the tightness of the lower bound
- In particular, the lower bound is perfectly tight when g matches the true posterior distribution over z's

All of our innovation in the next few slides will come from how we design Q
And we will be using this key criterion right here to guide us in designing Q

Training objective

maximize
%, %)Z (0 | 20) Bororo (22) -
. \O p\y) = P\Y | Zp) Pproto \Zp expensive

o

QGO /Z Deditor (Y | Zp, Ze) Dedit (2e) dze intractable

y = output sentence z, = prototype sentence ze = edit vector

So, let's start by applying the ELBO to our sum over prototypes.

ELBO on prototypes

Zp | Zp Pproto (Zp)

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO to that expression gives us the lower bound in gray.

Again, no need to look too hard at this.

What matters to make this a good lower bound, is that we must choose q to match the true posterior.
In this expression, the prototype sentence is the latent variable.

Note that Q is a distribution over prototype sentences.
And the posterior is a distribution over prototypes, given the output vy.

But what does the true posterior look like?

ELBO on prototypes

Zp | Zp Pproto (Zp)

q(2p) = KL (q(2p) [IPproto (2p))

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO to that expression gives us the lower bound in gray.
Again, no need to look too hard at this.

What matters to make this a good lower bound, is that we must choose q to match the true posterior.
In this expression, the prototype sentence is the latent variable.

Note that Q is a distribution over prototype sentences.
And the posterior is a distribution over prototypes, given the output vy.

But what does the true posterior look like?

ELBO on prototypes

Zp | Zp Pproto (Zp)

q(2p) = KL (q(2p) [IPproto (2p))

q(2p) = p(2p|Yy)

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO to that expression gives us the lower bound in gray.
Again, no need to look too hard at this.

What matters to make this a good lower bound, is that we must choose q to match the true posterior.
In this expression, the prototype sentence is the latent variable.

Note that Q is a distribution over prototype sentences.
And the posterior is a distribution over prototypes, given the output vy.

But what does the true posterior look like?

ELBO on prototypes

Zp | Zp Pproto (Zp)

q(2p) = KL (q(2p) [IPproto (2p))

q(zp) =p(zp|y)?

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO to that expression gives us the lower bound in gray.
Again, no need to look too hard at this.

What matters to make this a good lower bound, is that we must choose q to match the true posterior.
In this expression, the prototype sentence is the latent variable.

Note that Q is a distribution over prototype sentences.
And the posterior is a distribution over prototypes, given the output vy.

But what does the true posterior look like?

g(z) over prototypes

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:

- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.

In particular, zp should probably be in some neighborhood of y
where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.

Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question

q(zp) = p(2p | y)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question

q(zp) = p(2p | y)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question

q(zp) = p(2p | y)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question

q(zp) = p(2p | y)

*
*

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question Answer
prototype zp, was probably not
q (Zp) ~Dp (Zp ‘ y) too different fromy.
‘:. ?

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question Answer
prototype zp, was probably not
q (Zp) ~Dp (Zp ‘ y) too different fromy.
‘:. ?

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question Answer
prototype zp, was probably not
q (Zp) ~Dp (Zp ‘ y) too different fromy.
‘:. ?
’0. N (y) —_—

N(y) = all sentences with
high token overlap

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question Answer
prototype zp, was probably not
q (Zp) ~Dp (Zp ‘ y) too different fromy.
‘:. ?
’0. N (y) —_—

Jaccard

N(y) = all sentences with
high token overlap

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

Question Answer
prototype zp, was probably not
q (Zp) ~Dp (Zp ‘ y) too different fromy.

q(zp) := Uniform(N (y))
Q o,

: N (y) =

Jaccard

N(y) = all sentences with
high token overlap

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior p(z | y) asks the following question:
- If | see a sentence y, what prototype zp did it come from?

The answer | propose is that zp should probably be something no too different fromvy.
In particular, zp should probably be in some neighborhood of y

where the neighborhood is all sentences with high token overlap
and token overlap is measured by a threshold on Jaccard distance

Note that q is just a fixed distribution in this case. It is not learned.
Also, g depends on y, which is perfectly okay.

g(z) over prototypes

EI_BO = Z logp (v | 2p) q (2p) — KL (q(2p) [[Pproto (2p))

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

g(z) over prototypes

EI_BO = Z logp (v | 2p) q (2p) — KL (q(2p) [[Pproto (2p))
p I

— 1 +C
Nl 2 sl

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

g(z) over prototypes

EI_BO = Z logp (v | 2p) q (2p) — KL (q(2p) [[Pproto (2p))
p I

— 1 +C
Nl 2 sl

Looks like typical sequence-to-sequence objective

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

g(z) over prototypes

EI_BO = Z logp (v | 2p) q (2p) — KL (q(2p) [[Pproto (2p))
p I

— 1 +C
Nl 2 sl

Looks like typical sequence-to-sequence objective
prototype z, —> outputy

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

g(z) over prototypes

EI_BO = Z logp (v | 2p) q (2p) — KL (q(2p) [[Pproto (2p))
p I

— 1 +C
Nl 2 sl

Looks like typical sequence-to-sequence objective
prototype z, —> outputy

bias towards small edits

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

g(z) over prototypes

ELBO = 3 logn(y | 2) a(z0) — KL (4 (20) [Ioprote (z))
p I

— 1 +C
Nl 2 sl

Looks like typical sequence-to-sequence objective
prototype z, —> outputy

bias towards small edits computationally tractable

y = output sentence z, = prototype sentence ze = edit vector

When we plug this choice of q into the evidence lower bound, we get the following much simpler expression
This looks like a typical seq2seq objective, where we are mapping each prototype in the neighborhood of y, to the sentence y
It's now clear that this particular choice of q encourages the editor to make small edits, since the sentence pairs are not that difference

Furthermore, as we know, seq2seq training is computationally tractable using SGD

| also want to point out that there was nothing special about using Jaccard distance. You could have used any distance function, even a machine-learned paraphrase
distance function, and you would still get this expression.

Training objective

maximize
%, %)Z (0 | 29) Boroto (29 -
. \O p\y) = P\Y | Zp) Pproto \Zp expensive

o

QGO /Z Deditor (Y | Zp, Ze) Dedit (2e) dze intractable

y = output sentence z, = prototype sentence ze = edit vector

So that handles the first evidence lower bound.

Now, let's go to the second ELBO. This time, we want to handle the integral over edit vectors.

ELBO on edit vectors

logp (y | zp)

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

reconstruction_cost

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

reconstruction_cost KL_penalty

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

sample ze from q(ze) logp (y | 2p)

> Ezewq(ze) [logpeditor (y ‘ Zps ze)] — KL (C] (ze) Hpedit (Ze))

reconstruction_cost KL_penalty

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

sample ze from q(ze) logp (y | 2p)

Zy, 2o —> Y

/

> Ezewq(ze) [logpeditor (y ‘ Zps ze)] — KL (C] (ze) Hpedit (Ze))

reconstruction_cost KL_penalty

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

sample ze from q(ze) logp (y | 2p)

Zy, 2o —> Y

/

> Ezewq(ze) [logpeditor (y ‘ Zps Ze)] — KL (C] (ze) Hpedit (Ze))

reconstruction_cost KL_penalty

measures how well we can
reconstruct y from prototype
Z, and edit ze

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

sample ze from q(ze) logp (y | 2p)

Zy, 2o —> Y

/

> Ezervq(ze) [logpeditor (y ‘ Zps Ze)] — KL (C] (ze) Hpedit (ze))

reconstruction_cost KL_penalty

measures how well we can measures difference
reconstruct y from prototype between g and
Z, and edit ze edit prior Pedit

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound

There are two terms in this bound, which we can call the reconstruction cost and the KL penalty.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound
This expression is rather large, and warrants some explaining.
What matters is that there are two terms, which we can call the reconstruction cost and the KL penalty.

As before, we need to choose a good definition of g. This time, it needs to match the posterior distribution over edit vectors.
Again, let's meditate on what this posterior looks like.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

q(ze) = p(ze |y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound
This expression is rather large, and warrants some explaining.
What matters is that there are two terms, which we can call the reconstruction cost and the KL penalty.

As before, we need to choose a good definition of g. This time, it needs to match the posterior distribution over edit vectors.
Again, let's meditate on what this posterior looks like.

ELBO on edit vectors

logp (y | zp)

> B q(z) 108 Peditor (U | 2p; ze)] — KL (q (2¢) [|Peait (z¢))

q(ze) =p(2e | Yy 2p) ?

y = output sentence z, = prototype sentence ze = edit vector

Applying the ELBO, we get the following bound
This expression is rather large, and warrants some explaining.
What matters is that there are two terms, which we can call the reconstruction cost and the KL penalty.

As before, we need to choose a good definition of g. This time, it needs to match the posterior distribution over edit vectors.
Again, let's meditate on what this posterior looks like.

g(z) over edits

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze ‘ Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze ‘ Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze ‘ Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze ‘ Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze | Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question

q (Ze) ~p (Ze | Y, Zp)

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

g(z) over edits

Question Answer

Compare the two sentences.

q (Ze) ~ P (Ze | Y, Zp)
Figure out which words were
inserted and deleted.
Then sum their word vectors.

y = output sentence z, = prototype sentence ze = edit vector

In plain English, the posterior is saying:
if | see both prototype sentence zp and output y, what edit vector relates them?

Here is an illustration of g(z_e).

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Prototype
(The food here is ok but not worth the price)

Generation

(The food is mediocre and not worth the ridiculous price .)

Here is an illustration of g(z_e).

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Prototype
(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

. A

[(mediocre)(and Xridiculous)][(here) ok)(_ but

Here is an illustration of g(z_e).

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Prototype
(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

[(mediocre)(and Xridiculous)][(here) ok)(_ but

. A

Embed, sum, combine ‘

(°°W (OOW
[ooooo ooooo]

Here is an illustration of g(z_e).

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Prototype

(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

[(mediocre)(and Xridiculous)][(here)(ok)(but %

Embed, sum, combine ‘

(00000)(00000)(00000) (00000)(00000)(00000

@D

(G5060)

bias towards
interpretable edits

Here is an illustration of g(z_e).

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Here is an illustration of g(z_e).

Prototype
(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

[(mediocre)(and Xridiculous)][(here)(ok)(but %

Embed, sum, combine ‘

(°°W (OOW
[ooooo ooooo]

add noise l
bias towards
z e interpretable edits

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

Here is an illustration of g(z_e).

Prototype
(The food here is ok but not worth the price)

Generation
(The food is mediocre and not worth the ridiculous price .)
Identify
words to edit
Insert Set Delete Set

[(mediocre)(and Xridiculous)][(here)(ok)(but %

Embed, sum, combine ‘

(°°W (OOW
A
[ooooo ooooo] e

add noise l
bias towards
z e interpretable edits

So far, | have described a deterministic process to create an edit vector.
But what we want is an actual probability distribution over edit vectors.

So, as a final step, we will add noise to get our final z_e.
For reference, let's call the pre-noise version z hat.

How to add noise to 2.7

/2

Standard choice (VAE): Gaussian

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian

q (Ze) pedit(ze)

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian

q (Ze) pedit(ze)

computationally tractable

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian
/ .

q (Ze) pedit(ze)

ELBO = reconstruction_cost - KL_penalty

computationally tractable

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian
/ .

q (Ze) pedit(ze)

ELBO = reconstruction_cost - KL_penalty

reparameterization trick (VAES)

computationally tractable

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian
/ .

q (Ze) pedit(ze)

ELBO = reconstruction_cost - KL_penalty

reparameterization trick (VAES)
(low-variance MC estimate of gradient)

computationally tractable

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

Standard choice (VAE): Gaussian
/ .

q (Ze) pedit(ze)

ELBO = reconstruction_cost - KL_penalty

reparameterization trick (VAES) closed form
(low-variance MC estimate of gradient)

computationally tractable

A standard approach to adding noise (as you would see in the literature on variational autoencoders) is to add Gaussian noise
And then define the prior over z to also be Gaussian.

This is computationally tractable because the reconstruction cost can be estimated using the reparameterization trick, and the KL penalty has a closed form.

The problem with a Gaussian prior

But we chose not to use a Gaussian Q distribution, because Gaussians have a problem in high dimensions.

In the low dimensional picture, this Gaussian seems well-behaved.
Most of the mass is near the origin, implying that we prefer small edit vectors.

In contrast, a high dimensional Gaussian would look more like this, where most of the probability mass is concentrated on a thin shell.
In fact, it is known that if you sample a point from a Gaussian, its distance from the center follows a Chi distribution.

I've plotted the chi distribution for different dimensions.

Recall that our edit vector is the sum of word vectors.

This means we are imposing a very heavy prior that the edit should change no more than 12 and no less than 8 words.

Instead, we would like something that is much more uniform over lengths.

The problem with a Gaussian prior

low-dim Gaussian

Pedit (Ze)

But we chose not to use a Gaussian Q distribution, because Gaussians have a problem in high dimensions.

In the low dimensional picture, this Gaussian seems well-behaved.
Most of the mass is near the origin, implying that we prefer small edit vectors.

In contrast, a high dimensional Gaussian would look more like this, where most of the probability mass is concentrated on a thin shell.
In fact, it is known that if you sample a point from a Gaussian, its distance from the center follows a Chi distribution.

I've plotted the chi distribution for different dimensions.

Recall that our edit vector is the sum of word vectors.

This means we are imposing a very heavy prior that the edit should change no more than 12 and no less than 8 words.

Instead, we would like something that is much more uniform over lengths.

The problem with a Gaussian prior

low-dim Gaussian high-dim Gaussian
.
Pedit (Ze) Pedit (Ze>

But we chose not to use a Gaussian Q distribution, because Gaussians have a problem in high dimensions.

In the low dimensional picture, this Gaussian seems well-behaved.
Most of the mass is near the origin, implying that we prefer small edit vectors.

In contrast, a high dimensional Gaussian would look more like this, where most of the probability mass is concentrated on a thin shell.
In fact, it is known that if you sample a point from a Gaussian, its distance from the center follows a Chi distribution.

I've plotted the chi distribution for different dimensions.

Recall that our edit vector is the sum of word vectors.

This means we are imposing a very heavy prior that the edit should change no more than 12 and no less than 8 words.

Instead, we would like something that is much more uniform over lengths.

low-dim Gaussian

Pedit (Ze)

The problem with a Gaussian prior

high-dim Gaussian

Pedit (Ze>

1r

AR
11
[LESWINT

111

0.8

0.6

0.4

0.2

But we chose not to use a Gaussian Q distribution, because Gaussians have a problem in high dimensions.

In the low dimensional picture, this Gaussian seems well-behaved.
Most of the mass is near the origin, implying that we prefer small edit vectors.

In contrast, a high dimensional Gaussian would look more like this, where most of the probability mass is concentrated on a thin shell.
In fact, it is known that if you sample a point from a Gaussian, its distance from the center follows a Chi distribution.

I've plotted the chi distribution for different dimensions.

Recall that our edit vector is the sum of word vectors.

This means we are imposing a very heavy prior that the edit should change no more than 12 and no less than 8 words.

Instead, we would like something that is much more uniform over lengths.

The problem with a Gaussian prior

low-dim Gaussian high-dim Gaussian
-
DPedit (Ze) Pedit (Ze>

k
k
k
k
k

[LESWINT

111

0.5 —d =100

0.4 -

0.3

0.2 -

0.1}

But we chose not to use a Gaussian Q distribution, because Gaussians have a problem in high dimensions.

In the low dimensional picture, this Gaussian seems well-behaved.
Most of the mass is near the origin, implying that we prefer small edit vectors.

In contrast, a high dimensional Gaussian would look more like this, where most of the probability mass is concentrated on a thin shell.
In fact, it is known that if you sample a point from a Gaussian, its distance from the center follows a Chi distribution.

I've plotted the chi distribution for different dimensions.

Recall that our edit vector is the sum of word vectors.

This means we are imposing a very heavy prior that the edit should change no more than 12 and no less than 8 words.

Instead, we would like something that is much more uniform over lengths.

Better edit prior

y = output sentence z, = prototype sentence ze = edit vector

To fix this problem...

First, we'll propose a different edit prior, which explicitly encodes a uniform distribution over the magnitude of the edit vector.

Then, we need to define a q(z_e) that is compatible with this edit prior.
We will see how to do that next.

Better edit prior

mag ~ Unif [0, 10]

y = output sentence z, = prototype sentence ze = edit vector

To fix this problem...

First, we'll propose a different edit prior, which explicitly encodes a uniform distribution over the magnitude of the edit vector.

Then, we need to define a q(z_e) that is compatible with this edit prior.
We will see how to do that next.

Better edit prior

mag ~ Unif [0, 10]

dir ~ unif. over sphere

y = output sentence z, = prototype sentence ze = edit vector

To fix this problem...

First, we'll propose a different edit prior, which explicitly encodes a uniform distribution over the magnitude of the edit vector.

Then, we need to define a q(z_e) that is compatible with this edit prior.
We will see how to do that next.

Better edit prior

mag ~ Unif [0, 10]

dir ~ unif. over sphere

Dedit (ze)

y = output sentence z, = prototype sentence ze = edit vector

To fix this problem...

First, we'll propose a different edit prior, which explicitly encodes a uniform distribution over the magnitude of the edit vector.

Then, we need to define a q(z_e) that is compatible with this edit prior.
We will see how to do that next.

Better edit prior

o mag ~ Unif [0, 10]
q (Z 6) - dir ~ unif. over sphere

/2

Dedit (ze)

y = output sentence z, = prototype sentence ze = edit vector

To fix this problem...

First, we'll propose a different edit prior, which explicitly encodes a uniform distribution over the magnitude of the edit vector.

Then, we need to define a q(z_e) that is compatible with this edit prior.
We will see how to do that next.

How to add noise to 2.7

Starting with z_e hat, we first randomly rotate it, using a von Mises Fisher distribution.

How to add noise to 2.7

P

Ze

random rotation

von Mises-Fisher
distribution

Starting with z_e hat, we first randomly rotate it, using a von Mises Fisher distribution.

How to add noise to 2.7

P

Ze

random rotation

von Mises-Fisher
distribution

Starting with z_e hat, we first randomly rotate it, using a von Mises Fisher distribution.

How to add noise to 2.7

/

We then randomly perturb its magnitude

How to add noise to 2.7

/

We then randomly perturb its magnitude

How to add noise to 2.7

/

We then randomly perturb its magnitude

How to add noise to 2.7

<e

g(z) over edits

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

dir ~ vMF <(ﬁ, KV)

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

dir ~ vMF <(ﬁ, KV)

mag ~ Unif [mag, mag + €]

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

q (ze) Dedit (Ze)
Z .

dir ~ vMF <(ﬁ, KV)

mag ~ Unif [mag, mag + €]

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

q(ze) Pedit (ze)
Z .
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere

mag ~ Unif [mag, mag + €]

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits

q(ze) Pedit (2e)
% .
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €| mag ~ Unif [0, 10]

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits
q (Ze) Pedit (Ze)
A -
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €| mag ~ Unif [0, 10]
ELBO = reconstruction_cost - KL_penalty

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits
q (ze) Pedit (%e)
A .
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €] mag ~ Unif [0, 10]
ELBO = reconstruction_cost - KL_penalty
reparameterization trick (VAEs)

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits
q (ze) Pedit (%e)
A -
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €] mag ~ Unif [0, 10]
ELBO = reconstruction_cost - KL_penalty
reparameterization trick (VAEs) just a constant

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

g(z) over edits
q (ze) Pedit (2e)
A -
dir ~ vMF <(ﬁ, m) dir ~ unif. over sphere
mag ~ Unif [mag, mag + €] mag ~ Unif [0, 10]

ELBO = reconstruction_cost - KL_penalty

reparameterization trick (VAEs) just a constant
computationally tractable

To sum that up, we now have a q distribution which looks like this (left)
the magnitude is just a uniform perturbation of zhat's magnitude
and the direction is just a VMF perturbation of zhat's direction

And we will choose our edit prior to look like this, so that it actually concentrates mass near the origin
in particular, we'll draw a random magnitude uniform 0, 10 (guaranteeing spread out magnitudes)
and we'll draw a direction uniformly over the sphere

This new Q function still has all the nice properties that the standard Gaussian would give you

You can still apply the reparameterization trick
and the KL penalty is now a constant

Summary of training

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)

» For each pair of sentences (zp, y)

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)
» For each pair of sentences (zp, y)

1. identify words that differ between z, and y

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)
» For each pair of sentences (zp, y)
1. identify words that differ between z, and y

2. embed those words into a vector

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)
» For each pair of sentences (zp, y)

1. identify words that differ between z, and y

2. embed those words into a vector

3. add noise to get edit vector ze

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)
» For each pair of sentences (zp, y)

1. identify words that differ between z, and y

2. embed those words into a vector

3. add noise to get edit vector ze

4. train seg2seq mapping (zp, Ze) —>Y Peditor (Y | Zps Ze)

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

Summary of training

* Build a training set of lexically similar sentence pairs (zp, y)
» For each pair of sentences (zp, y)
1. identify words that differ between z, and y
2. embed those words into a vector
3. add noise to get edit vector ze
4. train seg2seq mapping (zp, Ze) —>Y Peditor (Y | Zps Ze)

5. update q(ze)

y = output sentence z, = prototype sentence ze = edit vector

That was a lot of lower bounds, but | want to emphasize that the final training procedure is fairly straightforward.

\end{Approach}

\begin{Results}

Now we can see how this stuff actually works.

i had the fried whitefish taco which
was decent, but i've had much bet-
ter.

i had the <unk> and the fried car-
nitas tacos, it was pretty tasty, but
i've had better.

"hash browns" are unseasoned,
frozen potato shreds burnt to a
crisp on the outside and mushy on

the inside.

the hash browns were crispy on
the outside, but still the taste was
missing.

i'm not sure what is preventing me
from giving it <cardinal> stars,
but i probably should.

i'm currently giving <cardinal>
stars for the service alone.

quick place to grab light and tasty
teriyaki.

this place is good and a quick place
to grab a tasty sandwich.

sad part is we've been there before
and its been good.

i've been here several times and al-
ways have a good time.

Before diving into the results, | want to show you some raw generations from the model.
Note that these are just for randomly sampled edit vectors.

Later on, we will consider edit vectors that we directly control, which allow for more precise editing behavior.

Prototype z,

i had the fried whitefish taco which
was decent, but i've had much bet-
ter.

i had the <unk> and the fried car-
nitas tacos, it was pretty tasty, but
i've had better.

"hash browns" are unseasoned,
frozen potato shreds burnt to a
crisp on the outside and mushy on
the inside.

the hash browns were crispy on
the outside, but still the taste was
missing.

i'm not sure what is preventing me
from giving it <cardinal> stars,
but i probably should.

i'm currently giving <cardinal>
stars for the service alone.

quick place to grab light and tasty
teriyaki.

this place is good and a quick place
to grab a tasty sandwich.

sad part is we've been there before
and its been good.

i've been here several times and al-
ways have a good time.

Before diving into the results, | want to show you some raw generations from the model.

Note that these are just for randomly sampled edit vectors.

Later on, we will consider edit vectors that we directly control, which allow for more precise editing behavior.

Prototype z,

Output y

i had the fried whitefish taco which
was decent, but i've had much bet-
ter.

i had the <unk> and the fried car-
nitas tacos, it was pretty tasty, but
i've had better.

"hash browns" are unseasoned,
frozen potato shreds burnt to a
crisp on the outside and mushy on
the inside.

the hash browns were crispy on
the outside, but still the taste was
missing.

i'm not sure what is preventing me
from giving it <cardinal> stars,
but i probably should.

i'm currently giving <cardinal>
stars for the service alone.

quick place to grab light and tasty
teriyaki.

this place is good and a quick place
to grab a tasty sandwich.

sad part is we've been there before
and its been good.

i've been here several times and al-
ways have a good time.

Before diving into the results, | want to show you some raw generations from the model.

Note that these are just for randomly sampled edit vectors.

Later on, we will consider edit vectors that we directly control, which allow for more precise editing behavior.

Prototype z,

(random edit vector)

i had the fried whitefish taco which
was decent, but i've had much bet-
ter.

i had the <unk> and the fried car-
nitas tacos, it was pretty tasty, but
i've had better.

"hash browns" are unseasoned,
frozen potato shreds burnt to a
crisp on the outside and mushy on

the inside.

the hash browns were crispy on
the outside, but still the taste was
missing.

i'm not sure what is preventing me
from giving it <cardinal> stars,
but i probably should.

i'm currently giving <cardinal>
stars for the service alone.

quick place to grab light and tasty
teriyaki.

this place is good and a quick place
to grab a tasty sandwich.

sad part is we've been there before
and its been good.

i've been here several times and al-
ways have a good time.

Output y

Before diving into the results, | want to show you some raw generations from the model.
Note that these are just for randomly sampled edit vectors.

Later on, we will consider edit vectors that we directly control, which allow for more precise editing behavior.

Overview of results

More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Here is the summary of the results | showed you earlier

We're going to start with semantics, because that is most interesting.

Overview of results

More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Here is the summary of the results | showed you earlier

We're going to start with semantics, because that is most interesting.

Edits are semantically meaningtul

Y ™~ Peditor (y ‘ Zps Ze)

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ™~ Peditor (y ‘ Zps Ze)

T

plug in your own edit vector!

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ™~ Peditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ~~ Deditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

semantic smoothness:

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ~~ Deditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

semantic smoothness:
small magnitude edit vector should cause small changes

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ~~ Deditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

semantic smoothness:
small magnitude edit vector should cause small changes

consistent edit behavior:

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ~~ Deditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

semantic smoothness:
small magnitude edit vector should cause small changes

consistent edit behavior:
apply the same edit vector to different sentences

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Edits are semantically meaningtul

Y ™~ Peditor (y ‘ Zps Ze)

T

semantic control plug in your own edit vector!

semantic smoothness:
small magnitude edit vector should cause small changes

consistent edit behavior:
apply the same edit vector to different sentences
should cause semantically analogous edits

y = output sentence z, = prototype sentence ze = edit vector

As described earlier, one sub-component of our model is an editor, which transforms one sentence into another.
A cool feature is that we can actually plug in any edit vector we want, and control the direction of the edits.

Up next, I'll be seeing just how much control we have.

Semantic smoothness

What we will do is use the editor to take a random walk in sentence space.

We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence

And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

random walk in
sentence space

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

random walk in
sentence space

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

random walk in
sentence space

Ze ™ Pedit

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

random walk in
sentence space

What we will do is use the editor to take a random walk in sentence space.

We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

o—»0o random walk in
sentence space

Ze ™ Pedit

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

A\
o——>0 random walk in
sentence space
Ze ™ Pedit
O
Zp

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

N
o——>0 random walk in
o sentence space
Ze ™ Pedit
O
Zp

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

h
—>0 /v‘ random walk in
o sentence space
Ze ™ Pedit
o
~p

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

\

e ®
o/
Ze ™ Pedit
o
Zp

Semantic smoothness

* ice cream was one of the best i've ever tried

random walk in
sentence space

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

h
—>0 /v‘ random walk in
o sentence space
Ze ™ Pedit
o
~p

* ice cream was one of the best i've ever tried .

* some of the best ice cream we've ever had .

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

h
—>0 /v‘ random walk in
o sentence space
Ze ™ Pedit
o
~p

* ice cream was one of the best i've ever tried .
* some of the best ice cream we've ever had .

* just had the best ice - cream i've ever had !

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

h
—>0 /v‘ random walk in
o sentence space
Ze ™ Pedit
o
~p

* ice cream was one of the best i've ever tried .
* some of the best ice cream we've ever had .
* just had the best ice - cream i've ever had !

« some of the best pizza i've ever tasted !

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Semantic smoothness

h
—>0 /v‘ random walk in
o sentence space
Ze ™ Pedit
o
~p

* ice cream was one of the best i've ever tried .
* some of the best ice cream we've ever had .

* just had the best ice - cream i've ever had !

« some of the best pizza i've ever tasted !

« that was some of the best pizza i've had in the area

What we will do is use the editor to take a random walk in sentence space.
We'll start with some prototype sentence zp

Then apply some random edit vector ze, to get a new sentence
And then rinse and repeat

Here is an example of what we get when we do this

Turkers: how jumpy is each step?

We then asked Turkers to rate how jumpy each step of the walk was
We got the following interesting result.
Over 30% of our steps resulted in actual paraphrases, while 40% were roughly equivalent.

Sometimes the editor did not do anything at all, which is the bad "identical" category on the right

Turkers: how jumpy is each step?

50

We then asked Turkers to rate how jumpy each step of the walk was
We got the following interesting result.
Over 30% of our steps resulted in actual paraphrases, while 40% were roughly equivalent.

Sometimes the editor did not do anything at all, which is the bad "identical" category on the right

Turkers: how jumpy is each step?

50

We then asked Turkers to rate how jumpy each step of the walk was
We got the following interesting result.
Over 30% of our steps resulted in actual paraphrases, while 40% were roughly equivalent.

Sometimes the editor did not do anything at all, which is the bad "identical" category on the right

Turkers: how smooth is the random walk?

blue = NeuralEditor green = SVAE [Bowman+ 2015]

50

40

30

20

10

paraphras®

roughly equivale™ game t0PIC unretated identical (pad)

better

—

We also compared our approach to the sentence VAE, another common approach for embedding sentences into vector space

In this comparison, we really tried hard to tune the SVAE to make small steps

But essentially, if we made the step size large, we would always end up with "unrelated" or "same topic" at best, and if we made the step size too small, we would always
end up with "identical"

Consistent edit behavior

So we know that the magnitude of the edit vector is quite meaningful. But what about the direction of the edit vector?

To explore this, we thought about sentence analogies.

Consistent edit behavior

This was a good restaurant .

So we know that the magnitude of the edit vector is quite meaningful. But what about the direction of the edit vector?

To explore this, we thought about sentence analogies.

Consistent edit behavior

e 'his was the best restaurant !

This was a good restaurant .

So we know that the magnitude of the edit vector is quite meaningful. But what about the direction of the edit vector?

To explore this, we thought about sentence analogies.

Consistent edit behavior

e 'his was the best restaurant !

This was a good restaurant .

e
Their cake was great.

So we know that the magnitude of the edit vector is quite meaningful. But what about the direction of the edit vector?

To explore this, we thought about sentence analogies.

Consistent edit behavior

e 'his was the best restaurant !

This was a good restaurant .

e Their cake was the greatest !

e
Their cake was great.

So we know that the magnitude of the edit vector is quite meaningful. But what about the direction of the edit vector?

To explore this, we thought about sentence analogies.

Sentence analogy dataset

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

. past tense
IS > was

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

. past tense
IS > was

past tense
comes > came

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

. past tense
IS > was
This is the place to go. This was the place to go.
past tense
comes > came

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

. past tense
IS > was
This is the place to go. This was the place to go.
past tense
comes > came
He comes home tired and happy. He came home happy and tired.

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

Lexical analogies [Mikolov+ 2013]

. past tense
IS > was
This is the place to go. This was the place to go.
past tense
comes > came
He comes home tired and happy. He came home happy and tired.

(allow reordering and stopwords)

Unfortunately, when we started doing this experiment, there was no readily available sentence analogy dataset.
So, we induced a sentence dataset from lexical analogies. Here's how that works.
We start with pairs of words that are analogous.

We then looked in the Yelp review corpus for pairs of sentences that were different by only those word pairs (allowing for reordering and stopwords)
We found at least 10 sentence pairs for each category of analogy

Sentence analogy dataset

This is the place to go. This was the place to go.

He comes home tired and happy. He came home happy and tired.

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy dataset

Ze
This is the place to go. CEEEELEEEELEL 2 This was the place to go.

He comes home tired and happy. He came home happy and tired.

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy dataset

Ze
This is the place to go. CEEEELEEEELEL 2 This was the place to go.

Zp

He comes home tired and happy. He came home happy and tired.

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy dataset

Ze
This is the place to go. CEEEELEEEELEL 2 This was the place to go.

Zp

He comes home tired and happy. He came home happy and tired.

é\ A

.
]
“an,
.-.......

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy dataset

Ze
This is the place to go. CEEEELEEEELEL 2 This was the place to go.

~p Y
He comes home tired and happy. He came home happy and tired.
00........ Ze A

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy dataset

Ze
This is the place to go. CEEEELEEEELEL 2 This was the place to go.

~p Y

He comes home tired and happy. He came home happy and tired.
. é;f A
"---------........-----------’ y

Then we completely throw away the word pairs.
Given a seed pair, we use our model to compute the edit vector between the two sentences.
We then go to a new sentence, call it the prototype, and apply the SAME edit vector.

Ideally, it should produce the same sentence as the true y

Sentence analogy results

Note: we need to generate an entire sentence that exactly matches the gold sentence.

Since that is quite hard, we consider it a win if the right sentence shows up in the top-10 beam elements of our model.

100

80

60

40

20

Sentence analogy results

xN© AWe WY ,)5 \137' \IB 3“?‘
s\)pe‘\a 00“\9 a? 1 5“?‘ / \la W / -

Exact sentence match (top-10 outputs)

Note: we need to generate an entire sentence that exactly matches the gold sentence.

Since that is quite hard, we consider it a win if the right sentence shows up in the top-10 beam elements of our model.

Sentence analogy results

100

80

60

40

20

\3}
® BN 35

/

35 \167—
\l eV -

ae

blue = exact sentence match (top-10 outputs)

green = exact word match (GloVE)

Interestingly, you can compare our sentence-level analogy performance
to word-level analogy performance by GloVe vectors

Note: these really aren't strictly comparable. GloVe only needs to predict a word. We need to predict an entire sentence.

Results

More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity

* can be used to perform sentence-level analogies

That concludes the investigation of semantics.

But for those of you who don't care about semantics, we also have more standard perplexity results

Results

More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity

* can be used to perform sentence-level analogies

That concludes the investigation of semantics.

But for those of you who don't care about semantics, we also have more standard perplexity results

Perplexity

We evaluated perplexity on the Yelp review corpus and the Billion Word Benchmark.

We compared the NeuralEditor against a standard neural language model.
The NeuralEditor has extra parameters in the encoder, but the same flexibility in the decoder.

Furthermore, we backoff to a standard NLM, because sometimes we encounter a sentence that simply doesn't look like anything in the training corpus.
In both cases, we get a nice drop in perplexity.
Yelp is less surprising, because people tend to say the same kinds of things over and over again.

But our results on the Billion Word Benchmark suggest that even news text can benefit.

We also have more results in the paper showing that even if you ensemble a standard NLM with Kneser-Ney, or some sort of pure memorization model, you don't get the
same benefits.

Perplexity

Yelp review corpus Billion Word Benchmark

We evaluated perplexity on the Yelp review corpus and the Billion Word Benchmark.

We compared the NeuralEditor against a standard neural language model.
The NeuralEditor has extra parameters in the encoder, but the same flexibility in the decoder.

Furthermore, we backoff to a standard NLM, because sometimes we encounter a sentence that simply doesn't look like anything in the training corpus.
In both cases, we get a nice drop in perplexity.
Yelp is less surprising, because people tend to say the same kinds of things over and over again.

But our results on the Billion Word Benchmark suggest that even news text can benefit.

We also have more results in the paper showing that even if you ensemble a standard NLM with Kneser-Ney, or some sort of pure memorization model, you don't get the
same benefits.

Perplexity

Yelp review corpus Billion Word Benchmark

green = standard NLM

blue = NeuralEditor (same decoder architecture)
+ backoff to standard NLM

We evaluated perplexity on the Yelp review corpus and the Billion Word Benchmark.

We compared the NeuralEditor against a standard neural language model.
The NeuralEditor has extra parameters in the encoder, but the same flexibility in the decoder.

Furthermore, we backoff to a standard NLM, because sometimes we encounter a sentence that simply doesn't look like anything in the training corpus.
In both cases, we get a nice drop in perplexity.
Yelp is less surprising, because people tend to say the same kinds of things over and over again.

But our results on the Billion Word Benchmark suggest that even news text can benefit.

We also have more results in the paper showing that even if you ensemble a standard NLM with Kneser-Ney, or some sort of pure memorization model, you don't get the
same benefits.

Perplexity

60
50
40
30
20

10
better

Yelp review corpus Billion Word Benchmark

= standard NLM

= NeuralEditor (same decoder architecture)
+ backoff to standard NLM

We evaluated perplexity on the Yelp review corpus and the Billion Word Benchmark.

We compared the NeuralEditor against a standard neural language model.
The NeuralEditor has extra parameters in the encoder, but the same flexibility in the decoder.

Furthermore, we backoff to a standard NLM, because sometimes we encounter a sentence that simply doesn't look like anything in the training corpus.
In both cases, we get a nice drop in perplexity.
Yelp is less surprising, because people tend to say the same kinds of things over and over again.

But our results on the Billion Word Benchmark suggest that even news text can benefit.

We also have more results in the paper showing that even if you ensemble a standard NLM with Kneser-Ney, or some sort of pure memorization model, you don't get the
same benefits.

Perplexity (closer look)

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Perplexity (closer look)

NLM vs KN5 likelihoods

|
N
o

NLM |0910
A
o

|
o
o

-80
KN5 |Oglo

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful

Perplexity (closer look)

NLM vs KN5 likelihoods

neural LM

|
N
o

NLM |0910
A
o

|
o
o

-80

KN5 |Oglo

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

NLM vs KN5 likelihoods

Perplexity (closer look)

|
N
o

NLM |0910
A
o

|
o
o

-80
KN5 |Oglo

neural LM
classic Kneser-Ney LM

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Perplexity (closer look)

NLM vs KN5 likelihoods

o 20 neural LM
= —40 classic Kneser-Ney LM
2 .

_60 similar

-80
KN5 |Oglo

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Perplexity (closer look)
NLM vs KN5 likelihoods
_-20 neural LM
= —40 classic Kneser-Ney LM
= .
60 similar
—80 : —-60 -40 =20
KN5 Iogm
NLM vs NeuralEditor likelihoods
0 Similarity to
training set |
=20 e 300
oy 50 .
2 40 1 e
=
—-60
—-80
-80 -60 -40 -20 0
NeuralEditor logio

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Perplexity (closer look)
NLM vs KN5 likelihoods
_-20 neural LM
= —40 classic Kneser-Ney LM
= .
60 similar
-80 —-60 —-40 -20
KN5 Iogm
0 NLM vs NeuralEditor likelihoods
Simil_arity to
20 treining set |- neural LM
oy 50 .
2 40 1 e
=
—-60
-80
—-80 —60 -40 -20 0
NeuralEditor logio

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Perplexity (closer look)
NLM vs KN5 likelihoods
_-20 neural LM
= —40 classic Kneser-Ney LM
= .
60 similar
—80 : —-60 -40 =20
KN5 Iogm
0 NLM vs NeuralEditor likelihoods
Simil_arity to
g g S neural LM
o 50 D e . .
< 40 1 e NeuralEditor
=
—-60
-80
-80 —-60 -40 -20 0
NeuralEditor logio

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

NLM vs KN5 likelihoods

—-60 -40
KN5 Iogm

-20

NLM vs NeuralEditor likelihoods

-20
2
o)
e
s —40
—
=2
-60
-80
o1 . .
Similarity to
training set |
0—20 e 300
o e 50
2 _10 1
=
|
=
—-60
-80
-80

—-60 —-40
NeuralEditor logio

=20

Perplexity (closer look)

neural LM
classic Kneser-Ney LM
similar

neural LM
NeuralEditor
different

| want to take a closer look at the perplexity, to understand why the NeuralEditor is so helpful.

Results

* More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Up next, we'll look at diversity and quality of generations.

Results

More diverse generations
Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

Up next, we'll look at diversity and quality of generations.

Naive way to increase diversity

A very naive way to increase the diversity of a language model is as follows
Since each time step produces a softmax distribution over words, we can raise the temperature of that softmax, to increase the diversity of the samples

The problem, as we will see, is that raising the temperature starts to allow ungrammatical sequences

Naive way to increase diversity

word word word word

O-O~O~O -

A very naive way to increase the diversity of a language model is as follows
Since each time step produces a softmax distribution over words, we can raise the temperature of that softmax, to increase the diversity of the samples

The problem, as we will see, is that raising the temperature starts to allow ungrammatical sequences

Naive way to increase diversity

word word word word

O-O~O~O -

A very naive way to increase the diversity of a language model is as follows
Since each time step produces a softmax distribution over words, we can raise the temperature of that softmax, to increase the diversity of the samples

The problem, as we will see, is that raising the temperature starts to allow ungrammatical sequences

Naive way to increase diversity

raise the temperature

word word word word

O-O~O~O -

A very naive way to increase the diversity of a language model is as follows
Since each time step produces a softmax distribution over words, we can raise the temperature of that softmax, to increase the diversity of the samples

The problem, as we will see, is that raising the temperature starts to allow ungrammatical sequences

Naive way to increase diversity

I_ allows ungrammatical
sequences

raise the temperature

word word word word

O-O~O~O -

A very naive way to increase the diversity of a language model is as follows
Since each time step produces a softmax distribution over words, we can raise the temperature of that softmax, to increase the diversity of the samples

The problem, as we will see, is that raising the temperature starts to allow ungrammatical sequences

Increasing diversity of NeuralEditor

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

Zp ™~ Pproto

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

Zp ™~ Pproto

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

...........

""""""

.t -

.
o
P
K
o
o
.
o
o
o
o
. z

’ y

Y ~ Peditor (y | Zps Ze)

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

...........

""""""

‘‘‘‘‘

o
P
K
o
o
.
o
o
o
o
. z

’ y

Y ~ Peditor (y | Zps Ze)

more diverse
prototypes

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

...........

""""""

‘‘‘‘‘

o
P
K
o
o
.
o
o
o
o
. z

’ y

Y ~ Peditor (y | Zps Ze)

more diverse

prototypes raise temperature

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

...........

""""""

.t -

.
o
P
K
o
o
.
o
o
o
o
. z

’ y

Y ~ Peditor (y | Zps Ze)

more diverse

prototypes raise temperature

still grammatical

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Increasing diversity of NeuralEditor

...........

""""""

.t -

.
Py
P
R
.
o
.
o
o
o
o
. z

’ y

Y ~ Peditor (y | Zps Ze)

more diverse

prototypes raise temperature

still grammatical

editor is only modeling minor variation
distribution is much easier to represent

In contrast, we have other options available when using the neural editor
There are actually two ways to increase diversity

First, we can control the diversity of our prototypes. If we simply make our prototype set more diverse, we can increase diversity without even touching the editor.

Second, we can still raise the temperature of the editor. Fortunately, even this still turns out to be quite grammatical.
Unlike the full neural language model, the editor is only modeling minor variation around one sentence, so the distribution is much easier to represent.

Diversity: NLM vs NeuralEditor

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

Diversity

o

wu

I

—— NeuralEditor
NLM

Unigram entropy (nats)

w

o
<]
=]
[N]

0.4 0.6 0.8 1.0

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

Diversity

o

wu

I

—— NeuralEditor
NLM

Unigram entropy (nats)

w

o
<]
=]
[N]

0.4 0.6 0.8 1.0

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

Diversity

o

wu

I

—— NeuralEditor
NLM

Unigram entropy (nats)

w

o
<]
=]
[N]

0.4 0.6 0.8 1.0

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

Diversity

o

wu

is always diverse
even at temperature = 0

I

—— NeuralEditor
NLM

w

Unigram entropy (nats)

o
<]
=]
[N]

0.4 0.6 0.8 1.0

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

%6 Diversity

= is always diverse
e’ —— NeuralEditor even at temperature = 0]
.53 NLM

5 0.0 0.2 0.4 0.6 08 10

Plausibility

=250 k//’\‘—{
T225
3 2.00

E —— NeuralEditor
8175 e

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

Diversity

o

wu

I

—— NeuralEditor

Unigram entropy (nats)

3 NLM
0.0 0.2 0.4 0.6 0.8 1.0
Plausibility
~ 2.50 |
m
=]
> 2.25
3 2.00
3 —— NeuralEditor
o 1.75 NLM

is always diverse
even at temperature = 0

generations
more plausible at all temps

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature

%6 Diversity

g5 is always diverse
24 I NeuralEditor even at temperature =0
. NLM

5 0.0 02 0.4 0.6 0.8 10

Plausibility

& 2.50 }///\j—{ .
=525 generations
5 2.00 more plausible at all temps
3 —— NeuralEditor
& 175 NLM

_ Grammaticality

32.4 /r\‘

222

é 2.0 r//r/

g 1.8 —— NeuralEditor

© NLM

516

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Diversity: NLM vs NeuralEditor

temperature
T Diversity
©
£
35
e
5,
g —— NeuralEditor
53 NLM
C
> 0.0 0.2 0.4 0.6 0.8 1.0
Plausibility
~ 2.50 |

N
N
]

Plausibility (1-3
= N
~ o
[6,] o

B

—— NeuralEditor
NLM

Grammaticality

V*”N

—— NeuralEditor
NLM

is always diverse
even at temperature = 0

generations
more plausible at all temps

grammaticality suffers
for higher temperatures

Let's look at the results empirically.

Here is a plot of temperature vs diversity.

Results

/ More diverse generations

Higher quality generations
Better perplexity (BillionWord, Yelp reviews)

Edits are semantically meaningful
* preserve semantic similarity
* can be used to perform sentence-level analogies

\end{Results}

