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Abstract

Modeling object boundaries based on image or point cloud data is frequently necessary in medical 

and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to 

the classification of organisms based on their structural information. In low-contrast images or 

sparse and noisy point clouds, there is often insufficient data to recover local segments of the 

boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a 

closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly 

diverse 2D objects in the form of closed curves. The model is based on a novel multiscale 

deformation process. By relating multiple objects through a hierarchical formulation, we can 

successfully recover missing boundaries by borrowing structural information from similar objects 

at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, 

indicating dimensions of significant structural variability and also specifying a ‘central curve’ that 

summarizes the collection. Theoretical properties of our prior are studied in specific cases and 

efficient Markov chain Monte Carlo methods are developed, evaluated through simulation 

examples and applied to panorex teeth images for modeling teeth contours and also to a brain 

tumor contour detection problem.
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1. INTRODUCTION

Boundaries of objects are widely studied across many disciplines, including biomedical 

imaging, cytology and computer vision. In describing complex boundaries, one can use a 

parametric curve (2D) or surface (3D), C(t):  → ℝ2 or C(t):  → ℝ3 respectively, where 

 ⊂ ℝ and  ⊂ ℝ2. This is different from a typical function estimation problem because 

the independent variable, t, is unknown. In addition, the curve must be closed to produce a 

valid boundary.

A collection of introductory works on curve and surface modeling can be found in Su and 

Liu (1989) and subsequent developments in Müller (2005). Popular representations include 

Bézier curves, splines, and principal curves (Hastie and Stuetzle 1989), the final one being a 

nonlinear generalization of principal components involving smooth curves which pass 

through the middle of a data cloud. Su, Dryden, Klassen, Le and Srivastava (2011) dealt 
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with curve modeling based on stochastic processes when the observations are given as a set 

of time-indexed points on manifolds. Srivastava, Klassen, Joshi and Jermyn (2011) 

developed an elegant theoretical framework for comparing and analyzing shapes of curves 

once the fitted curves are obtained. Nonparametric representations of parametric curves and 

surfaces are widely used (Barnhill 1985; Lang and Röschel 1992; Hagen and Santarelli 

1992; Aziz, Bata and Bhat 2002), because they provide a flexible model for a broad range of 

objects.

Although there is a vast literature on estimating curves and surfaces, the majority of this 

work focuses on estimating unrestricted functions. However, the boundary of a simply-

connected object must be a closed curve, which is a restriction on the curve representation. 

Estimating a closed surface or curve involves a different modeling strategy and there has 

been little work in this regime, particularly from a Bayesian perspective. To our knowledge, 

only Pati and Dunson (2011) developed a Bayesian approach for fitting a single 3D closed 

surface (instead of multiple 2D closed curves) from point cloud data in ℝ3. Fischler and 

Bolles (1981) developed the random sample consensus (RANSAC) algorithm that is used 

for finding simpler shapes (lines, circles, etc) in point clouds. Active contours (Blake and 

Isard 1998) (contours driven by differential equations, such as the Mumford-Shah equation) 

and Bayesian active contours (Lievin, Delmas, Coulon, Luthon and Fristol 1999) can be 

used to find contours in images directly, as opposed to point clouds generated from images. 

Several articles focus on finding shapes in cluttered point clouds, with shapes defined using 

simple closed curves, and using explicit models for both noise and clutter. However, none of 

these methods borrows information to fit multiple objects. In applications featuring low-

contrast images or sparse and noisy point clouds, there is often insufficient data to recover 

the entire boundary in isolation. Thus, it becomes critical to exploit similarities of multiple 

related objects.

One strategy for modeling multiple complex curves is to refactor them in a multiscale 

fashion, as done by Fourier and wavelet descriptors (Whitney 1937; Zahn and Roskies 1972; 

Mortenson 1985; Persoon and Fu 1977). These approaches decompose a curve into 

components at different scales, so that the coarsest scale components carry the global 

approximation information while the finer scale components contain the local detailed 

information. Mokhtarian and Mackworth (1992), Désidéri and Janka (2004) and Désidéri, 

Abou El Majd and Janka (2007) also proposed multiscale curves. Such multiscale 

transforms make it easier to compare objects that share the same coarse outline, but differ on 

finer details, or vice versa. The finer scale components can also be discarded to yield a finite 

and low-dimensional representation. However, none of these methods are model-based and 

do not allow automatic estimation of uncertainty.

In this paper, we propose a Bayesian hierarchical model for object boundaries, which 

addresses all of the aforementioned problems: 1) guaranteeing valid boundaries through 

closed curves, 2) enabling borrowing of information when fitting multiple similar objects, 

and 3) employing a multiscale representation suitable for representing curves at different 

resolutions.
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The key innovation in our model is a closed curve generating random process which can 

approximate the whole range of simply connected 2D objects. It is based on applying a 

sequence of multiscale deformations to a closed curve formed by a cyclic basis (Röth, 

Juhász, Schicho and Hoffmann 2009). Because the model is multiscale, it is able to detect 

and borrow inter-object similarities at a particular resolution even if similarities are not 

present at other resolutions.

En route, we solve several important sub-problems that may be generally useful in the study 

of curve and surface fitting. We develop a model-based approach for parameterizing point 

cloud data. We show how fully Bayesian joint modeling can be used to incorporate several 

pieces of auxiliary information in the process of curve-fitting, such as when a surface 

orientation is reported for each point within a point cloud. The concept of multiscale 

deformation can be generalized to 3D surfaces in a straightforward manner.

2. CLOSED CURVE GENERATING RANDOM PROCESS

Our closed curve generating random process starts with a closed curve and performs a 

sequence of multiscale deformations to generate a final curve. In §2.1, we introduce the 

Roth curve developed by Röth et al. (2009), which will be used to represent the object 

boundary and demonstrate how to deform a Roth curve at multiple scales to produce any 

simply-connected object. Using the mechanisms developed in §2.1, we present the full 

random process in §2.2. In §4, we use this as a prior distribution for fitting multiple curves.

2.1 Roth curves

A Roth curve is a closed parametric curve, C: [−π, −π] → ℝ2, defined by a set of J = 2n + 1 

control points in ℝ2, {cj, j = 1, … , 2n + 1}, with n the positive integer-valued degree of the 

curve. As a function of t, the curve can be viewed as the trajectory of a particle over time. At 

every time t, the particle’s location is a convex combination of the control points, with 

weights varying over time according to a set of basis functions, { , j = 1, …, J}, where 

 and  for all t. In particular, we have

(1)

(2)

where  specifies the location of the jth control point and 

 is the jth basis function. For simplicity, we omit the superscript n 

denoting a basis function’s degree. This representation is a type of Bezier curve. The Roth 

curve has appealing properties:
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1. C(−π) = C(π) implies that the curve is always closed. This is necessary to represent 

the boundary of an object.

2. All basis functions are nonlinear translates of each other, and are evenly spaced 

over the interval [−π, π]. They can be cyclically permuted without altering the 

curve. This implies that each control point exerts the same “influence” over the 

curve.

3. A degree 1 Roth curve having 3 control points is always a circle or ellipse.

4. Any closed curve can be approximated arbitrarily well by a Roth curve, for some 

large degree n. This is because the Roth basis, for a given n, spans the vector space 

of trigonometric polynomials of degree n and as n → ∞, the basis functions span 

the vector space of Fourier series.

5. Roth curves are infinitely differentiable (C∞).

Although we could also obtain closed curves using a Fourier basis, the major advantage of 

the Roth basis is that it has a simple representation for degree elevation and the curve lies in 

the convex hull of the control points (see Figure 1). Our multiscale model exploits these 

properties through deformation and degree elevation.

A Roth curve can be deformed by translating some of its control points.

Definition—Suppose we are given two Roth curves,

(3)

where for each j, c̃j = cj + Rjdj, dj ∈ ℝ2 and Rj is a rotation matrix. Then, we say that C(t) is 

deformed into C̃(t) by the deformation vectors {dj, j = 1, … , J}.

Each Rj orients the deformation vector dj relative to the original curve’s surface. As a result, 

positive values for the y-component of dj correspond to outward deformation, negative 

values correspond to inward deformation, and dj ’s x-component corresponds to deformation 

parallel to the surface. Rj is also termed as a deformation-orienting matrix. In precise terms,

(4)

where θj is the angle of the curve’s tangent line at , the point where the 

control point cj has the strongest influence: . θj can be obtained by 

computing the first-derivative of the Roth curve, also known as its hodograph.

Definition—The hodograph of a Roth curve is given by:
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(5)

(6)

where t ∈ [−π, π]. If we view C(t) as the trajectory of a particle, H(t) intuitively gives the 

velocity of the particle at point t.

Writing H(t) = (Hx(t), Hy(t))′, observe that

(7)

Hence Rj is a function of {cj ∈ ℝ2, j = 1; … ; J}.

To alter the scale of deformation, we utilize an important concept called degree elevation.

Definition—Given any Roth curve, we can use degree elevation to re-express the same 

curve using a larger number of control points (a higher degree). More precisely, if we are 

given a curve of degree n, , we can elevate its degree by any positive 

integer v, to obtain a new degree elevated curve:  such that C(t) 

= Ĉ(t) for all t ∈ [−π, π]. In Ĉ(t), each new degree-elevated control point, ĉj, can be defined 

in terms of the original control points, {ci, i = 1, … , 2n + 1}:

Although daunting to read, the only crucial points to note about this relationship are that b ĉj 

is linear in ci’s, i = 1, … , 2n + 1 and that the ‘influence’ of a single control point shrinks 

after degree elevation. This is because the curve now depends on a greater total number of 

control points. This implies that after degree-elevation, the translation of any single control 

point will cause a smaller, finer-scale deformation to the curve’s structure. Thus, degree 

elevation can be used to adjust the scale of deformation. This is exploited in the construction 

of the random process proposed in §2.2.

To that end, we first rewrite all of the concepts described above in more compact vector 

notation. The formulas for degree elevation, deformation, the hodograph and the curve itself 
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all simply involve linear operations on the control points. Rewrite the control points in a 

‘stacked’ vector of length 2J,

(8)

The formula for a Roth curve given in (1) can be rewritten as

(9)

(10)

The formula for the hodograph given in (5) is rewritten as

(11)

Deformation can be written as

(12)

where block (A1, … , Aq) is a pq × pq block diagonal matrix using p × p matrices Ai, i = 1, 

… , q. T is also termed as the stacked deformation-orientating matrix. It is a function of c, 

because each Rj depends on c. Degree elevation can be written as the linear operator, E:

where

These properties are crucially used to construct multiscale curves and to incorporate any 

prior knowledge of the shape of the object through appropriate prior distribution for the 

deformation vectors. Although we can guarantee closedness using the Fourier basis, the 

curve produced by Fourier basis does not necessarily lie in the convex hull as the basis 

functions are not guaranteed to be non-negative. Basis functions described in Zahn and 

Roskies (1972) can as well be used for constructing the curves as long as a proper 
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characterization of degree-elevation and an interpretation of the coefficients in terms of the 

shape of the curve is available.

2.2 Hierarchical Multiscale Curve Model

Our multiscale curve-generating process starts by drawing an initial set of control points, 

c(0), from a prior distribution to induce an initial Roth curve. For convenience in notation, 

we refer to all curves by their control point vectors c. Exploiting the deformation and 

degree-elevation operations defined above, we repeatedly apply the following recursion R 

times:

(13)

resulting in a final curve c(R). In other words, (i) degree elevate the current curve, (ii) 

randomly deform it, and repeat a total of R times. This random process induces a prior 

distribution for the final R-resolution curve c(R). Figure 2 provides an illustration.

We elaborate on the details of this recursive process below. The parameters of the process 

are

1. R, the number of steps (resolution levels).

2. nr, the degree of the curve c(r), for each r = 0, … , R. The sequence  is strictly 

monotonically increasing. We let Jr = 2nr + 1.

3. μr ∈ ℝ2Jr, the average set of deformations applied at step r = 0, … , R. This vector 

contains a stack of deformations, not just one.

4. Σr ∈ ℝ2Jr×2Jr, the covariance in the set of deformations applied at step r = 0, … , R.

For these parameters, Er is the degree-elevation matrix going from degree nr−1to nr, N(·, ·) is 

a 2Jr-variate normal distribution and Tr is the stacked deformation orienting matrix. The 

initial curve c(0) is chosen to be an ellipse, which we generate a priori from c(0) = T0d(0), 

with d(0) ~ N(μ0, Σ0).

The random process gives a multiscale representation, because each step produces 

increasingly fine-scale deformations, through degree-elevation. Let  denote the class of 

curves that can be exactly represented by a degree nr Roth curve. If  is monotonically 

increasing, then  ⊂  ⊂ … . Thus, the deformations d(r) roughly describe the additional 

details gained going from  to .

Expression (13) provides a multiscale hierarchical model, which can be used not only to 

generate a single curve but also to borrow information across multiple related curves. 

Importantly, we allow the level of heterogeneity across curves to vary with resolution level. 

In some applications, different curves may have similar coarse scale shapes, while varying 

in fine details. In other applications, there may be more similarities in fine scales.

In equation (13), μr is the mean deformation at level r. Based on {μr, r = 0, … , R}, we 

define the ‘central curve’ of the random process, cμ as:
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As the deformation variance Σr decreases, there will be less variance across curves at scale 

r. If Σr ≈ 0 across scales, then all the curves will closely resemble the central curve. This is 

illustrated in Figure 3. The central curve provides a convenient summary of a group of 

curves. The covariance Σr also controls correlation between the deformation vectors at the 

same resolution, allowing incorporation of higher-level assumptions, such as reflected or 

radial symmetry. For example, if R = 2, n1 = 1 and n2 = 2, we can specify perfect correlation 

in Σ2, such that  and . The resulting curves are symmetric along an axis of 

reflection.

Allard, Chen and Maggioni (2012) and Xie, Huang and Willett (2012) introduced multiscale 

manifold models, which estimate a d-dimensional manifold or more general non-linear 

subspace embedded in D dimensional Euclidean space. In our case, d = 1 and D = 2. There 

are several differences between our approach and this literature. Previous multiscale 

manifold models focus on estimation of a single manifold , while we are interested in 

estimating a population distribution of related manifolds. In addition, instead of point 

estimation, we estimate a posterior distribution for the population distribution while 

incorporating the closed curve constraint. In contrast, Allard et al. (2012) and Xie et al. 

(2012) essentially characterize  on the coarsest scale using a single hyperplane and then 

introduce additional hyperplanes in going to finer scales. At the coarsest scale, we instead 

have an ellipse and then degree elevate in the Roth basis in going to finer scales.

3. PROPERTIES OF THE HIERARCHICAL MULTISCALE CURVE MODEL

3.1 Moments

We discuss some basic properties of hierarchical model (13). In particular, we want to study 

the effect of the parameters at different resolutions on the mean and variance of c(R). The 

proofs are found in Appendix A.

Proposition 3.1—Let  denote the expectation with respect to the randomness in the r-th 

resolution and  denote the overall expectation. Then

 is the mean curve assuming μr = 0, r = 1, … , R and is constructed using a 

sequence of degree elevations on T0μ0. The dispersion matrix at a particular resolution is the 

sum of low-rank degree-elevated rotated dispersion matrices from all the previous 

resolutions.
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3.2 Prior support

To justify use of Roth bases, it is important to study their exibility. Consider for simplicity a 

single resolution Roth curve with control points {cj, j = 0, … , 2n}. Assume we have 

independent Gaussian priors on each of the two coordinates of cj for j = 0, … , 2n, 

, j = 0, … , 2n. Denote the prior for C by ΠCn. ΠCn 

defines an independent Gaussian process for each of the components of C. Intuitively, the 

support characterizes the variety of prior realizations along with those which are in their 

limit. We construct a prior distribution to have large support so that the prior realizations are 

exible enough to approximate the true underlying target object. As reviewed in van der 

Vaart and van Zanten (2008), the support of a Gaussian process (in our case ΠCn) is the 

closure of the corresponding reproducing kernel Hilbert space (RKHS). The following 

Lemma 3.2 describes the RKHS of ΠCn, denoted by . Refer to Appendix A for the proofs.

Let the Hölder class of periodic functions on [−π, π] of order α be denoted by Cα([−π, π]). 

Define the class of closed parametric curves (α1, α2) having different smoothness along 

different coordinates as

(14)

Lemma 3.2—The RKHS  of ΠCn consists of all functions h : [−π, π] → ℝ2 of the form

(15)

The following theorem describes how well an arbitrary closed parametric surface S0 ∈ 

(α1, α2) can be approximated by the elements of  for each n.

Theorem 3.3—For any fixed S0 ∈ (α1, α2), there exists h ∈  with 

 such that

(16)

for some constants K1, K2 > 0 independent of n.

This shows that the Roth basis expansion is sufficiently flexible to approximate any closed 

curve arbitrarily well. Although we have only shown large support of the prior under 

independent Gaussian priors on the control points, the multiscale structure should be even 

more flexible and hence rich enough to characterize any closed curve. We can also expect 

minimax optimal posterior contraction rates using the prior ΠCn similar to Theorem 2 in Pati 

and Dunson (2011) for suitable choices of prior distributions on n.
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4. HIERARCHICAL MODEL FOR MULTIPLE CURVES

4.1 Pre-processing to obtain point cloud from a pixelated image

We first describe the necessary pre-processing steps to obtain point clouds representing the 

boundary pixels of closed contours of the objects of interest. We will illustrate the steps on a 

panorex teeth image (refer to Figure 4). The goal here is to extract the pixels corresponding 

to the teeth boundaries. We discuss two simple algorithms.

1. Gradient thresholding: The grayscale image can be treated as a function Z : ℝ2 → 

ℝ. The gradient of this function, ∇Z : ℝ2 → ℝ2 is a vector field, where ∇Z(x, y) is 

a vector pointing in the direction of steepest ascent at (x, y). In computer vision, it 

is well known that the gradient norm of the image, ||∇Z||2 : ℝ2 → ℝ approximates a 

‘line-drawing’ of all the high-contrast edges in the image. In practice, an image is 

discretized into pixels {za,b | a = 1, …, X, b = 1, …, Y} but a discrete version of the 

gradient can still be computed by taking the difference between neighboring pixels, 

such that one gradient vector, ga,b is computed at each pixel. The image’s gradient 

norm is then just another image, where each pixel ma,b = ||ga,b||2. Finally, we 

extract a point cloud: {(a, b) | ma,b > M, a = 1, …, X, b = 1, …, Y} where M is some 

user-specified threshold. Each point (a, b) can still be matched to a gradient vector 

ga,b = (g(a,b),x, g(a,b),y)′. For convenience, we will re-index them as pi and gi. The 

gradient vector points in the direction of steepest change in contrast, approximating 

the object’s surface normal. The surface orientation is then just .

2. Contour operator: In low resolution images like the one in Figure 4, simply 

thresholding the gradient might not be sufficient to obtain a reasonable collection 

of pixels representing the boundary. A contour operator for edge detection (CORF) 

(Azzopardi and Petkov 2012) is another popular tool particularly suited to low 

contrast images. CORF also gives a bonus estimate for the object’s surface 

orientation, ωi at each point pi. Due to noise, CORF may fail to detect large 

portions of a tooth’s boundary (false negative), while also identifying false 

boundaries that do not exist (false positive), typically termed “clutter”(see 

illustration on three chosen teeth in the top panel of Figure 5). To limit complexity, 

we manually remove clutter prior to analysis. The resulting boundary pixels are 

shown in the bottom panel of Figure 5.

4.2 Modeling multiple point cloud data

Assume that the kth object boundary consists of points { , i = 1, …, Nk} 

concentrated near the kth 2D closed curve for k = 1, …, K. Since a Roth curve can be 

thought of as a function expressing the trajectory of a particle over time, we view each data 

point,  from the kth object as a noisy observation of the underlying closed curve Ck 

evaluated at time ,

(17)
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For each k, Ck is constructed using deformations {d(r),k | r = 0, …, R} as in (13),

with the following priors placed on the resolution-specific means and covariances:

where diag(v) is a diagonal matrix with elements in the vector v along the diagonal. We treat 

R and {nr | r = 0, …, R} as elicited hyperparameters. For simplicity we assume a diagonal 

covariance structure Σr, which implies independence between deformations and the x, y 

components of each deformation. It is straightforward to allow non-diagonal Σr using 

inverse-Wishart priors, but the resulting model becomes heavily-parameterized and difficult 

to compute. This hierarchical structure induces dependence between the K curves, enabling 

them to borrow information from each other during fitting.

In order to appropriately borrow information, objects need to be aligned to remove 

differences in position and orientation. We choose the initial curve c(0),k to be degree n0 = 1, 

which guarantees that it is an ellipse. For j = 1, 2, 3, we define each control point as

(18)

(19)

and where each  is a random deformation vector. We start with a curve that is just 

a point at the origin, Ck(t) ≡ (0, 0), and apply three random deformations which are rotated 

by a radially symmetric amount: 0°, 120° and 240° (the final deformations are not radially 

symmetric, since each dj is randomly drawn). We can use the following vector notation:

According to (18), our random process generates closed curves centered at (0, 0) and rotated 

to a fixed angle. However, in an actual collection of curves, each object is rotated to a 

different angle and centered at a different location. We can modify (18) to account for this 

simply by adding latent variables for the position, mk ∈ ℝ2, and orientation, ϕk ∈ [−π, π], of 

each object k:
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where Rϕk is a rotation matrix. We place a uniform prior on ϕk and a normal prior on mk. It 

can be desirable to put a more sophisticated spatial prior on mk, but our focus here is on 

modeling object boundaries, not their location. The orientation of level r = 0 orients all 

subsequent levels. This is sufficient to align the entire collection and make the deformation 

vectors of each curve directly comparable.

To summarize the hierarchical model, we introduce a few notations.

where  is as defined in (11). Thus we have

(20)

(21)

(22)

(23)

(24)

(25)

(20) – (25) complete a Bayesian formulation for inferring {c(r),k, r = 0, …, R}, k = 1, …, K, 

given pk, k = 1, …, K and tk, k = 1, …, K. Typically,  is not known and can be treated as a 

latent covariate corresponding to point . There is no ordering constraint on the s, and we 

let . We discuss posterior computation using our model in Appendix B.

A natural question is whether the posterior distribution is invariant to rotating and translating 

the point cloud. Suppose the data points pi are transformed to  where O is a 

rotation matrix and T ∈ ℝ2. Then the likelihood obtained by fitting the curve C(t) to the 

points  is same as the likelihood obtained by fitting O′C(t) + T to the points pi, as the error 
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variance is invariant to rotation. Clearly, if , the curve 

 is obtained using rotating and translating the original 

control points. Assuming the same prior for the control points, the posterior distribution will 

be translated and rotated using T and O′ respectively.

4.3 Modeling surface orientation

In the following, we show how to include data on surface orientation  into (20) – (25). We 

incorporate this extra information into our model to improve fitting, with essentially no 

sacrifice in computational efficiency. Denote by  the velocity 

vector of the curve Ck(t) at the parameterization location , i = 1, …, Nk.  is always 

tangent to the curve. Since each  points roughly normal to the curve, we can rotate all of 

them by 90 degrees, , and treat each  as a noisy estimate of ’s orientation. We 

cannot rotate the vector  by 90 degrees and directly treat it as a noisy observation of . In 

particular, ’s magnitude bears no relationship to the magnitude of  is the rate of 

change in image brightness when crossing the edge of the object, while  describes the 

speed at which the curve passes through .

Suppose we did have some noisy observation of , denoted . Then, we could have 

specified the following linear model relating the curve Ck to the ’s:

(26)

(27)

for i = 1, …, Nk where δi ~ N2(0, (τk)2I2). Instead, we only know the angle of . In 

Appendix B, we show that using this model, we can still write the likelihood for , by 

marginalizing out the unknown magnitude of . The resulting likelihood still results in 

conditional conjugacy of the control points.

5. SIMULATION STUDY

To demonstrate borrowing of information at multiple scales, we define several curves which 

share the same features at a fine-scale resolution, but differ in their coarse-scale structure. 

Each curve is sparsely sampled with noise to produce a point cloud, and our goal is to 

recover the original curves. Due to gaps in the point cloud, the original curves are very hard 

to recover without detecting and leveraging structural similarities at the fine scale. This 

scenario is similar to real-world applications where a single object has been observed in 

multiple poses, or a collection of similar objects have been observed. We compare our 

model (HBM: hierarchical Bayesian model) against a simpler version of our model that fits 
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the different curves independently (IM: independence model), and against principal curves 

(PC) (Hastie and Stuetzle 1989).

Because the curves differ in structure at the coarse scale, there is no trivial way to align the 

point clouds and identify shared fine-scale features. Thus, it was not apparent how to 

achieve borrowing of information using principal curves prompting us to fit PC 

independently to each of the point clouds. For HBM, it is only necessary to initialize the 

parametrization of each point cloud via polar-coordinate parametrization (see Appendix B.

4). The method is robust to small errors in initial parametrization.

We define several concepts to help interpret our results. Given some curve c, let B(c) = { 

(t)c | t ∈ [−π, π]} denote the set of all points along the curve, and let A(c) denote the interior 

region enclosed by the curve. For a given distribution over curves, P(c), we define its 

boundary heatmap, , and its region heatmap, , as:

Given a set of samples from the distribution P(c), {cs | s = 1, …, S}, we can discretely 

approximate  and  as:

where W(x, y) = {(x′, y′) | (x′, y′) ∈ [x div Δx, x div Δx + Δx] × [y div Δy, y div Δy + Δy]} (div 

denotes integer division). The function W simply maps values in ℝ2 to a regular grid of bins 

with width Δx and height Δy. Lastly, the mean can be approximated by .

For the example given in Figure 6, we have used 2 resolutions. The hyperparameters were 

set to: r1 = 1, r2 = 8, Σ1 = 1000 I2Jr1
, Σ2 = 0.001 I2Jr2

, , μμ2 
= 02Jr2

, Σμ1 = 1000 I2Jr1
, Σμ2 = 1000 I2Jr2

, α = 1, β = 1, σp = 0.1.

Convergence was monitored using the Raftery & Lewis diagnostic test as well as trace plots 

of the deviance parameters. Also, we get essentially identical posterior summaries with 

different MCMC starting points and moderate changes to hyperparameters. We additionally 

conduct sensitivity analyses in which we vary hyperparameters in the priors for μ0 and Σ0, 

demonstrating robustness to the central curve initialization.

It is evident from Figures 6(a) and 6(b) that HBM leads to more accurate estimates by 

borrowing information across different point clouds. In most of the cases, IM fails to recover 

the true boundary from sparse data. The heatmaps in Figures 6(c) suggest that HBM is 

successful in properly characterizing uncertainty near sparse regions. PC, not being able to 
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borrow information across the different point clouds, fails to successfully recover the 

missing chunks of the boundary (refer to Figure 6(d)).

The posterior distribution for cμ successfully captures the artificially injected variability in 

the structure of the curve. Again, we interpret P(cμ | {pk}) using its boundary heatmap 

 (just MB for notational convenience). Figure 7 shows that the posterior estimate 

of cμ using HBM provides a good estimate of the true curve.

6. REAL DATA APPLICATIONS

We consider two real data applications to demonstrate the efficacy of our closed curve 

generating model. The first one shows that the model can borrow information across 

multiple closed curves to fill in missing boundaries of teeth from low resolution panorex 

images. The second application illustrates how to intelligently combine expert traces of a 

brain tumor using our model to come up with a heatmap of the tumor contour, a useful 

graphical tool for excising tumors.

6.1 Filling missing teeth boundaries in panorex images

The panorex X-ray (refer to Figure 4) is a useful technique to diagnose dental problems 

related to cavities and jaw. The X-ray provides an image of the teeth and surrounding bones. 

Sometimes referred to as a single FMX, or full mouth X-ray, the panorex provides a two-

dimensional panoramic view of the mouth. The image quality is highly dependent on patient 

positioning and features of the laser technology used. Hence teeth outlines are significantly 

hard to determine using simple edge detection algorithms which fail to take into account the 

noise associated with each pixel or allow borrowing of information from similar teeth. 

Clearly, in these low contrast panorex images, there is insufficient data to recover local 

segments of the boundary of a single tooth in isolation. Our goal is to utilize the multiscale 

random closed curve generating process to borrow information from similar teeth to fill in 

missing boundaries.

As mentioned before, the image in Figure 4 is processed with CORF to extract the edge 

pixels, shown in the top panel of Figure 8(a). Then the clutter is manually removed to obtain 

the boundary pixels (middle panel of Figure 8(a)). Observe that the removal of clutter does 

not provide any extra information about missing boundaries. We implement HBM on the 

boundary pixels of 6 chosen teeth using 5000 MCMC iterations after discarding a burn-in of 

2000. The hyperparameters of our model were set to: r1 = 1, r2 = 5, r3 = 15, 

, μμ2 = 02Jr2
, μμ3 = 02Jr3

, Σμ1 = 2000 I2Jr1
, Σμ2 = 1000 I2Jr2

, Σμ3 = 

2000 I2Jr3
, α = 1/30, β = 1/30, σp = 2.

In the bottom panel of Figure 8(a), we display the results of HBM. The teeth enclosed by the 

posterior mean contours are shown in grey. Clearly, HBM successfully recovered most of 

the missing boundaries. The central curves for each of the resolutions are shown in Figure 

8(b). The radii of the circles centered at the control points represent the posterior uncertainty 

associated with each control point and provide useful information on the uncertainty of the 

teeth contours.
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We compared our method with two state-of-the-art techniques i) active contours (Chan and 

Vese 2001), suited to curve estimation from images (shown in the bottom panel of Figure 9) 

and ii) principal curves, suited to curve estimation from point clouds (shown in the top panel 

of Figure 9). As there are no obvious ways we can allow the methods to borrow information 

across related teeth, we implement them independently on each tooth. To put active contours 

and principal curves on even footing with our model, we seeded both methods with an initial 

curve formed by taking all of the boundary pixels for a given tooth (after removing clutter) 

and manually “connecting the dots” in the correct order. This favorable initialization is not 

typically provided when running either method. In addition to existing pre-processing steps, 

the active contours require delineating part of the boundary which is shared by the 

neighboring teeth to prevent the contours from spilling into the neighboring pixels. This is a 

highly undesirable phenomenon as it requires manual input of extra information on the 

shape of the boundary. The results of the principal curves are highly sensitive to the choice 

of the smoothing parameters. A large value of the smoothing parameter fails to capture finer 

details while smaller values lead to deranged fits involving self intersecting curves. We 

search over different smoothing parameters to find a single value that performed reasonably 

for all the teeth. As evident from Figure 8(a) and 9, the hierarchical Bayesian model 

performs much better relative to the competitors.

6.2 Brain tumor tracing

In brain tumor diagnosis and therapy, it is very important to account for uncertainty in the 

tumor’s outline. This information is crucial for assessing whether a tumor has grown/

regressed over time, and even more important if a surgeon must target the tumor for excision 

or radiation therapy. In that situation, there is a critical tradeoff between false positives 

(targeting healthy tissue) and extremely undesirable false negatives (missing the tumor). 

Furthermore, tumor outlines are notoriously hard to determine. Error stems from the poor 

contrast between tumor and healthy tissue in magnetic resonance imaging (MRI), the 

prevalent modality for diagnosis. Even seasoned experts differ greatly when tracing an 

estimate.

In the current application of combining information across multiple radiologist 

segmentations of a brain tumor, a primary advantage is having a posterior distribution over 

segmentations which we used to create heatmaps demonstrating uncertainty. Such 

uncertainty regions are quite important in making treatment decisions, but approaches for 

consensus segmentation in the computer vision literature produce a point estimate.

We use our model to intelligently combine the input traces of multiple experts obtained from 

a brain tumor segmentation study in Archip, Jolesz and Warfield (2007), by treating each 

trace as a different realization from the same random process. We can then interpret P(cμ | 

{pk}) as the posterior distribution of the tumor, fully describing the variability and 

uncertainty among the experts. One might also run additional tumor segmentation 

algorithms, and combine their outputs using the same approach. In this setting, the region 

heatmap of the posterior,  (shortened to MA), is especially informative. For every 

point x, MA(x) gives the probability that it is part of the tumor. This enables a neurosurgeon 

to manage the tradeoff between false positives/negatives in a principled manner. Let the true 
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tumor region be Xtumor ⊂ ℝ2 and  its complement. Then, define the loss function for 

targeting a region X to be

Depending on the ratio of the penalties λ+ and λ−, the surgeon can minimize L simply by 

cutting along a level set of MA.

Figure 10(a) shows the raw MRI image and Figure 10(b) shows the region heatmap 

corresponding to the highest resolution. The hyperparameters were set to: r1 = 1, r2 = 5, r3 = 

17, , μμ2 = 02Jr2
, μμ3 = 02Jr3

, Σμ1 = 2200 I2Jr1
, Σμ2 = 2200 

I2Jr2
, Σμ3 = 2200 I2Jr3

, α = 1, β =0.01, σp = 0.05.

The lower middle region in the resolution 3 region heatmap shows more uncertainty 

compared to other regions demonstrating the experts tend to differ more near the inward 

indentation at the lower middle region of the tumor. Thus one can cut along the desired level 

set of the heatmap to obtain a better surgery than to just cut along any one of the four traces.

We can also allow for experts to express varying confidence in different portions of their 

trace. This is desirable, because certain boundaries of the tumor will have high contrast with 

the surrounding tissue while other parts won’t, and the expert should not be forced to make 

an equal opinion on both. We can achieve this by slightly modifying the point cloud model 

given in (17). There, we assumed that each point pi was generated with fixed variance . 

Instead, we can let , where κi is the expert’s confidence in that point. 

Furthermore, if the expert has no confidence at all, they can simply leave a gap in their trace. 

The model automatically closes the gap, as shown in simulation examples. Lastly, it is also 

easy to compute the posterior distribution for quantities such as the size of the tumor, simply 

by computing the size of each sample.

7. DISCUSSION

We have developed a fully Bayesian hierarchical model based on multiscale deformations 

for modeling a collection of 2D closed curves. In using a parametric curve, a fundamental 

issue is to render the analysis of curves invariant to the choice of parameterization. Although 

we have characterized a collection of curves using our fully Bayesian approach, it is not 

clear whether our approach leads to a parameterization invariant analysis. There is an 

elegant literature on parameterization invariant shape analysis (Kurtek, Klassen, Ding and 

Srivastava 2010; Kurtek, Srivastava, Klassen and Ding 2011; Kurtek, Klassen, Ding, 

Jacobson, Jacobson, Avison and Srivastava 2011). However their approaches are not fully 

model based. Comparing the shapes of objects in a rigorous Riemannian framework will 

involve further work, such as defining a loss function involving an appropriate metric 

between shapes.
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In defining the multiscale process, we would like to have a more automatic way of choosing 

the different resolutions. It is clear that the highest resolution is obtained by maximizing the 

fit subject to minimizing the Bayesian penalty for model complexity. In our future research 

we would like to have a more informed way of selecting the lower resolutions.

Our multiscale model differs in its purpose from other multiscale methods such as the 

wavelet transform. With wavelet methods, the goal is often to compress the data, whereas 

our goal is to define levels that isolate dimensions of similarity or variability within a 

collection of objects. However, one can use any wavelet basis instead of the Roth basis to 

define analogously a multiscale random curve generating process. In certain applications 

where it is desirable to accurately estimate the fine scale local features, a compactly 

supported basis might be more suitable.

Typically real images are contaminated with noise from different sources (Srivastava and 

Jermyn 2009) (i) shape variations within classes, (ii) variability in sampling continuous 

curves, (iii) pose and scale variability, (iv) observation noise, and (v) points introduced by 

clutter. Taking into account all these will be a challenge in a model based framework. 

However, clutter can be taken care of by introducing a mixture model involving two 

components - the first one for pixels coming from the target image contour and the second 

one for the clutter pixels. For simplicity of exposition in the current paper, we focus our 

attention only on modeling the boundary pixels of the target object.
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A. PROOFS OF MAIN RESULTS

Proof of Proposition 3.1

Assuming μr = 1, …, R,

Observe that

Iterating R + 1 times, we obtain the required result.

Proof of Lemma 3.2

The Gaussian process prior ΠCn given {σj, j = 0, …, 2n} has the following representation.

(A.1)

Since , ΠCn can be written as

(A.2)

where . Hence from Proposition 1 in Pati and Dunson (2011),  consists of h : 

[−π, π] → ℝ2 such that

(A.3)

where cj ∈ ℝ2. The RKHS norm of h in (A.3) is given by .

Proof of Theorem 3.3

From (Stepanets 1974) and observing that the basis functions { , j = 0, …, 2n} span the 

vector space of trigonometric polynomials of degree at most n, it follows that given any 

, there exists , hi(u) =[−π, π] → ℝ with , 
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such that  for some constants Mi, Ki > 0, i = 1, 2. Setting 

, we have

with  where M = M(2), K = K(2).

B. POSTERIOR COMPUTATION

In §4, we presented a model for characterizing and fitting a collection of K closed curves, 

with unknown underlying parametrization. Below we describe an MCMC algorithm for 

sampling from the joint posterior of this model. This involves deriving the conditional 

posteriors of mk, d(r),k, μr, Σr and tk for r = 0, …, R and k = 1, …, K. We obtain the posterior 

samples from  for a grid of points t1, …, tk ∈ [−π, π] and obtain the average 

across MCMC iterations for each grid-point.

B.1 Conditional posteriors for mk and d(r),k

The conditional posteriors for mk and d(r),k are the most challenging to sample from, because 

our model’s likelihood function is nonlinear in these terms, preventing conditional 

conjugacy. To overcome this, we derive a linear approximation to the true likelihood 

function, which does yield conditional conjugacy, and then use samples from the 

approximate conditional posterior as proposals in a Metropolis-Hastings step.

We first discuss the source of nonlinearity in the likelihood function. Assuming σk = σ for 

all k for simplicity of exposition, recall from §4.2 that:

From §2.2, c(R),k is the result of combining the deformations {d(r),k | r = 0, …, R} through 

the following recursive relation, with mk appearing in the base case:

(A.4)

(A.5)

At each step r of the recursive process, the deformation-orienting matrix Tr is a nonlinear 

function of the previous c(r−1),k. As a result, c(R),k is nonlinear in d(r),k for r = 0, …, R − 1. 

For any given step of the process, we can replace the true recursive relation with a linear 

approximation. In particular, we will substitute Tr(c(r−1),k)d(r),k with T̂
r,kc(r−1),k, where T̂

r,k 

will be derived shortly. The new approximate step is then
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(A.6)

If we wish to write c(R),k linearly in terms of c(r),k for any r = 0, …, R, we can replace every 

recursive step from r to R with the approximate step given in (A.6). We emphasize that steps 

0, …, r − 1 follow the original recursive relation. This yields the following approximation:

(A.7)

Combining (A.4) and (A.7), we have that:

Thus, the approximation of c(R),k can be written linearly in terms of any d(r),k or mk. It is still 

nonlinear in d(ρ),k for any ρ ≠ r. However, for MCMC sampling, we only need one d(r),k to 

be linear at a time, holding all others fixed. The approximation becomes increasingly good 

as r approaches R, because the number of approximate steps (contained in ) decrease.

We are now in a position to derive the approximate conditional posteriors for mk and d(r),k. 

We claim that these posteriors can all be written in the following form for generic ‘x’, ‘y’ 

and ‘z’.

(A.8)

(A.

9)

Each approximate conditional posterior is simply a multivariate normal. We show that each 

approximate posterior can be rearranged to match the form of (A.8) – (A.9).
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We use Papprox(mk | −) and Papprox(d(r),k | −) as M-H proposal distributions to sample from 

their true counterparts. Both are multivariate normals and if necessary, their variance 

parameters may be tuned to improve sampling efficiency.

B.2 Derivation of the approximate deformation-orienting matrix, T̂

For visual clarity of the derivation, we will temporarily drop superscripts denoting the 

resolution r and object index k of each variable. First, we recall from §2 that T(c) is a block 

diagonal matrix with blocks consisting of the rotation matrices Rj, for j = 1, …, J (where J is 

the total number of control points at resolution r). Each Rj rotates its corresponding 

deformation, dj, by . Using the identities

we can write Rj as:

where . This term intuitively represents the “speed” of the curve 

at parametric position qj. We approximate this term with the fixed constant Sj = sj(cprev), 

where cprev is just the curve sampled in the previous iteration of the M-H sampler. The 

hodograph, H (t) = Ẋ(t)c, is a linear function of c. So, we can now approximate Rj as a linear 

function of c:

Then, we can write Rjdj as:

and finally we define T̂ = block (R̂
1, …, R̂

J).
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B.3 Conditional posteriors for μr and Σr

B.4 Griddy Gibbs updates for the parameterizations  and orientation ϕk

We discretize the possible values of  to obtain a discrete approximation of its 

conditional posterior:

We can make this arbitrarily accurate, by making a finer summation over τ. To achieve 

quick burn-in, we initialize  using polar-coordinate parametrization, where

The point p̄k is the average of { , i = 1, …, N} and ϕk is the orientation variable defined in 

§4.

We discretize the possible value of ϕk ∈ [−π, π] in a similar manner to obtain the full 

conditionals.

B.5 Likelihood contribution from surface-normals

Define

(A.10)
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(A.11)

Proposition B.1

The likelihood contribution of the tangent directions , i = 1, …, Nk ensures conjugate 

updates of the control points for a multivariate normal prior.

Proof—Recall the noisy tangent direction vectors ’s and ’s in (26). Using a simple 

reparameterization

where only s are observed and ei’s aren’t. Observe that

(A.12)

Assuming a uniform prior for the ’s on ℝ, the marginal likelihood of the tangent direction 

 given τ2 and the parameterization  is given by

It turns out the above expression has a closed form given by

The likelihood for the { , i = 1, …, Nk} is given by

where
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and  is a 2(2n3 + 1) × 2 matrix. Clearly, an inverse-Gamma for 

τ2 and a multivariate normal prior for the control points are conjugate choices.
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Figure 1. 
Deformation of a Roth curve
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Figure 2. 
An illustration of the closed curve generation process. From left to right: 1) initial curve 

specified by three control points, 2) the same curve after degree elevation, 3) deformation, 4) 

degree elevation again, 5) deformation again. Dark lines indicate the curve, pale dots 

indicate the curve’s control points, and pale lines connect the control points in order.
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Figure 3. 
Random samples from the closed curve generating process (the central curve is in the top 

right corner of every panel). (a) A moon-shaped collection, (b) star-shaped collection, (c) 

high-variance but symmetry-constrained collection.
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Figure 4. 
Panorex image
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Figure 5. 
Obtaining point cloud of teeth boundaries from panorex image
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Figure 6. 
Simulation study (blue/cyan dots: data points, green line: true curve, black line: posterior 

mean, MB discretized into 3 colored regions - red:> 0.95, orange:> 0.5, yellow:> 0.01)
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Figure 7. 
Central curve heatmap for 2 resolutions (the left one with 3 control points and the right with 

33 control points)
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Figure 8. 
HBM on panorex images
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Figure 9. 
Comparison with principal curves (top panel) and Active contours (bottom panel)
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Figure 10. 
a) 4 expert traces overlaid on MRI

b) Resolution 3 region heatmap
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